An experimental design is used to assign variables for testing. In contrast to a control design where nothing is changed, the experimental design allows you to test various new inputs to see how they would vary from the original results.
Answer:
Take the measurement of the distance (d) with a meter rule (in meters) and also measure the time (t) of the travel in seconds with a stopwatch.
question: What is the speed of the cart?
Explanation:
The speed of an object in motion is the distance covered by the object with respect to time, that is, the ratio of distance covered to the time taken to reach that distance.
Speed = distance / time
= d (in meters m) / t (in seconds s) = m/s
Acceleration of the both masses tied together= 6m/s²
Explanation:
The force is given by F= ma
so 5= m1 (8)
m1=0.625 Kg
for m2
5=m2 (24)
m2=0.208 kg
now total mass= m1+m2=0.625+0.208
Total mass=M=0.833 Kg
now F= ma
5= 0.833 (a)
a= 5/0.833
a=6m/s²
Answer:
The thrown rock will strike the ground
earlier than the dropped rock.
Explanation:
<u>Known Data</u>


, it is negative as is directed downward
<u>Time of the dropped Rock</u>
We can use
, to find the total time of fall, so
, then clearing for
.
![t_{D}=\sqrt[2]{\frac{300m}{4.9m/s^{2}}} =\sqrt[2]{61.22s^{2}} =7.82s](https://tex.z-dn.net/?f=t_%7BD%7D%3D%5Csqrt%5B2%5D%7B%5Cfrac%7B300m%7D%7B4.9m%2Fs%5E%7B2%7D%7D%7D%20%3D%5Csqrt%5B2%5D%7B61.22s%5E%7B2%7D%7D%20%3D7.82s)
<u>Time of the Thrown Rock</u>
We can use
, to find the total time of fall, so
, then,
, as it is a second-grade polynomial, we find that its positive root is
Finally, we can find how much earlier does the thrown rock strike the ground, so 