1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataliya [291]
2 years ago
7

TEST: Circuit---2/25/21 All of the following apply to an electric current, except:

Physics
1 answer:
posledela2 years ago
5 0
C Electrical is your answer
You might be interested in
You are caulking a window. The caulk is rather thick and, to lay the bead correctly, the exit nozzle is small. A caulking gun us
ZanzabumX [31]

Answer:

The answer is

A. Pressure is distributed uniformly throughout the fluid and the area of the plunger is much larger than the area of the opening.

Explanation:

 The question is incomplete, here is a complete question with full options

You are caulking a window. The caulk is rather thick and, to lay the bead correctly, the exit nozzle is small. A caulking gun uses a plunger which is operated by pulling back on a handle. You must squeeze the handle very hard to get the caulk to come out of the narrow opening because:_________.

A. pressure is distributed uniformly throughout the fluid and the area of the plunger is much larger than the area of the opening.

B. viscous drag between the walls of the tip and the caulk causes the caulk to swirl around chaotically.

C. Newton’s third law requires most of the energy in the caulk to be used to push back on the plunger rather than moving it through the tip.

D. the high density of the caulk impedes its flow through the small opening.

Since the caulk is thick and the exit nozzle is small, the pressure needed to deliver the caulk will be very high as pressure is uniformly distributed at the plunger side at every part of the caulk, hence very high pressure is needed to deliver the caulk which is why the handle needed the very hard squeeze

3 0
3 years ago
A 6 kg tennis ball moves at a velocity of 14 m/s. The ball is struck by a racket, causing it to rebound in the opposite directio
Sergeeva-Olga [200]
Answer and method on photo

6 0
2 years ago
Narysuj wykres zależności v(t) jeśli w chwili początkowej t=0 V=10m/s w każdej sekundzie szybkość zmniejsza się o 1m/s . Po jaki
irina1246 [14]

1) See graph in attachment

2) 10 s

3) 50 m

Explanation:

1)

In this problem, we have an object initially moving with a velocity of

v = 10 m/s

when the time is

t = 0 s

Then, we are told that the speed of the object is decreasing by 1 m/s every  second. This means that on a velocity-time graph, the motion will be represented by a straight line, starting from v = 10 when t = 0, and decreasing by 1 m/s every second.

The result can be found in the graph in attachment.

Moreover, we can also infer that the motion of the object is accelerated (because velocity is changing), and that the acceleration is constant and it is equal to

a=1 m/s^2

which is equivalent to the gradient of the line in the velocity-time graph.

2)

In this part, we want to find after what time the body will stop its motion.

To do that, we can use the following suvat equation:

v=u+at

where

v is the final velocity

u is the initial velocity

a is the acceleration

t is the time

In this problem:

u = 10 m/s is the initial velocity of the body

a=-1 m/s^2 is the acceleration

v = 0 m/s, because we want to find the time T at which the body will stop

Re-arranging the equation, we find:

T=-\frac{u}{a}=-\frac{10}{-1}=10 s

3)

In order to find the total distance covered by the body during its accelerated motion, we have to use another suvat equation:

s=ut+\frac{1}{2}at^2

where

s is the distance covered

u is the initial velocity

t is the time

a is the acceleration

In this problem:

u = 10 m/s is the initial velocity

a=-1 m/s^2 is the acceleration

t = 10 s is the time it takes for the body to stop (found in part 2)

Solving for s, we find the distance covered:

s=(10)(10)+\frac{1}{2}(-1)(10)^2=50 m

7 0
3 years ago
Margy is trying to improve her cardio endurance by performing an exercise in which she alternates walking and running 100.0 m ea
Kipish [7]

Answer:

6.5 m/s

Explanation:

We are given that

Distance, s=100 m

Initial speed, u=1.4 m/s

Acceleration, a=0.20 m/s^2

We have to find the final velocity at the end of the 100.0 m.

We know that

v^2-u^2=2as

Using the formula

v^2-(1.4)^2=2\times 0.20\times 100

v^2-1.96=40

v^2=40+1.96

v^2=41.96

v=\sqrt{41.96}

v=6.5 m/s

Hence, her final velocity at the end of the 100.0 m=6.5 m/s

5 0
2 years ago
A photon in a laboratory experiment has an energy of 5 eV. What is the frequency of this photon? (using the idea of the electron
andreyandreev [35.5K]
Answer and working shown on photo

7 0
3 years ago
Other questions:
  • Which of the following is likely the best electrical insulator
    11·1 answer
  • Someone help plzz :))
    7·2 answers
  • If a bus you are riding is traveling at a constant speed and then stops suddenly, you feel "thrown" forward. Which of the follow
    15·1 answer
  • What is a lunar eclipse?
    14·2 answers
  • How does the nitrogen enter the food web?
    10·1 answer
  • Explain the law of conservation of energy. Give a specific example using kinetic and potential energy that shows how energy is c
    14·1 answer
  • Describes at least three everyday things that exist or occur because of science
    7·1 answer
  • The volume of an object as a function of time calculated by V=At^3+B/t,where t is time measured in seconds and V is in cubic met
    8·1 answer
  • In any vector space au=bu implies a=b ? Trou or False​
    12·2 answers
  • Why do you think fixed boundaries ""flip"" waves and loose boundaries do not?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!