1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hoa [83]
3 years ago
9

Describe what happens to the system inside of a refrigerator or freezer in terms of heat transfer, work, and conservation of ene

rgy. Confine yourself to time periods in which the door is closed.
A. Work is done on the system and heat is transferred from the system for a net decrease in internal energy.
B. Work is done on the system and heat is transferred into the system for a net increase in internal energy.
C. Work is done by the system and heat is transferred into the system for a net decrease in internal energy.
D. Work is done by the system and heat is transferred from the system for a net decrease in internal energy.
Physics
1 answer:
Over [174]3 years ago
6 0

Answer: A. Work is done on the system and heat is transferred from the system for a net decrease in internal energy.

Explanation:

A refrigerator is a device which dispenses heat from the close system to a warmer area or in the surrounding. By dispensing the heat the internal temperature of the refrigerator drops. The system of refrigerator violates the second law of thermodynamics. As it performs the work to cool the region instead of heating the region. The work is done on the system and the internal energy decreases and the heat energy is liberated to the surrounding area. A refrigerator is an open system.

You might be interested in
A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the
rjkz [21]

Answer:

a) F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

b) \mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

Explanation:

In order to solve this problem we must first do a drawing of the situation and a free body diagram. (Check attached picture).

After a close look at the diagram and the problem we can see that the crate will have a constant velocity. This means there will be no acceleration to the crate so the sum of the forces must be equal to zero according to Newton's third law. So we can build a sum of forces in both x and y-direction. Let's start with the analysis of the forces in the y-direction:

\Sigma F_{y}=0

We can see there are three forces acting in the y-direction, the weight of the crate, the normal force and the force in the y-direction, so our sum of forces is:

-F_{y}-W+N=0

When solving for the normal force we get:

N=F_{y}+W

we know that

W=mg

and

F_{y}=Fsin \theta

so after substituting we get that

N=F sin θ +mg

We also know that the kinetic friction is defined to be:

f_{k}=\mu_{k}N

so we can find the kinetic friction by substituting for N, so we get:

f_{k}=\mu_{k}(F sin \theta +mg)

Now we can find the sum of forces in x:

\Sigma F_{x}=0

so after analyzing the diagram we can build our sum of forces to be:

-f+F_{x}=0

we know that:

F_{x}=Fcos \theta

so we can substitute the equations we already have in the sum of forces on x so we get:

-\mu_{k}(F sin \theta +mg)+Fcos \theta=0

so now we can solve for the force, we start by distributing \mu_{k} so we get:

-\mu_{k}F sin \theta -\mu_{k}mg)+Fcos \theta=0

we add \mu_{k}mg to both sides so we get:

-\mu_{k}F sin \theta +Fcos \theta=\mu_{k}mg

Nos we factor F so we get:

F(cos \theta-\mu_{k} sin \theta)=\mu_{k}mg

and now we divide both sides of the equation into (cos \theta-\mu_{k} sin \theta) so we get:

F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

which is our answer to part a.

Now, for part b, we will have the exact same free body diagram, with the difference that the friction coefficient we will use for this part will be the static friction coefficient, so by following the same procedure we followed on the previous problem we get the equations:

f_{s}=\mu_{s}(F sin \theta +mg)

and

F cos θ = f

when substituting one into the other we get:

F cos \theta=\mu_{s}(F sin \theta +mg)

which can be solved for the static friction coefficient so we get:

\mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

which is the answer to part b.

3 0
3 years ago
Read 2 more answers
What is the chemical formula for ammonium hydroxide
hoa [83]
NH4OH is the answer. Hope this helps you.
8 0
3 years ago
Which has the most kinetic energy?
lara31 [8.8K]

Answer:

I think A golf ball shot out of a small cannon

Explanation:

3 0
2 years ago
Relate a real life phenomenon with each branch of physics
anastassius [24]

Answer:

Branches of physics with real life examples

In measuring and understanding nuclear fission (a real life phenomenon), all branches of theoretical and experimental physics have to be employed. Physics branches needed in it are, radiation detection and measurement, nuclear physics, statistical physics, thermodynamics, and almost all others.

Explanation:

4 0
3 years ago
A physical pendulum in the form of a planar object moves in simple harmonic motion with a frequency of 0.460 Hz. The pendulum ha
zlopas [31]

Answer:

The  moment of inertia is  I =1.0697 \ kg m^2

Explanation:

From the question we are told that

    The  frequency is  f  =  0.460 \ Hz

    The  mass of the pendulum is  m  =  2.40  \ kg

    The  location of the pivot from the center is d  =  0.380 \ m

     

Generally the period of the simple harmonic motion is mathematically represented as

        T   = 2 \pi  *  \sqrt{  \frac{I}{ m  *  g *  d  } }

Where I is the moment of inertia about the pivot point , so making I the subject of the formula it

=>    I =  [ \frac{T}{2 \pi } ]^2 *  m*  g * d

But the period of this simple harmonic motion can also be represented mathematically as

        T  =  \frac{1}{f}

substituting values

      T  =  \frac{1}{0.460}

      T  =  2.174 \ s

So

      I =  [ \frac{2.174}{2 * 3.142 } ]^2 *   2.40*  9.8 * 0.380

      I =1.0697 \ kg m^2

4 0
3 years ago
Other questions:
  • Mike is watching a Disney movie with his son Jason Jason likes the movie so much that he becomes excited and stands in front of
    15·1 answer
  • What is a force that opposes the motion between two objects in contact with each other?
    8·1 answer
  • The ______ is between the mesosphere and the exosphere. troposphere stratosphere thermosphere exosphere
    8·2 answers
  • Two vectors, X and Y, form a right angle. Vector X is 48 inches long and vector Y is 14 inches long. the length of the resultant
    10·1 answer
  • Ductility describes the ability of a substance to deform without breaking or fracturing. This physical property allows metallic
    7·2 answers
  • If X = 5 and Y = 3, what does Z equal? <br> 2X + 2Z = 10Y
    13·2 answers
  • Calculate the acceleration of the car for each set of conditions using the formula a = (v2 – v1) / (t2 – t1) where v2 and v1 are
    14·2 answers
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! I CANNOT RETAKE THIS!!
    10·2 answers
  • Light____.
    15·2 answers
  • Same diagram... At which location would it be possible for a LUNAR ECLIPSE to happen? *
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!