1. 2 way radio
2. radio waves
3. communication
4. convert the voltage from a transmitter into a radio signal
5. signal strength refers to the transmitter power output
6. sorry, not so sure.. Though it might be the waves.
The momentum increases by a factor of 2
Explanation:
We can solve this problem by rewriting the momentum of the rocket in terms of the kinetic energy and the mass.
The kinetic energy of the rocket is:
(1)
where
m is the mass
v is the velocity
The momentum of the rocket is
(2)
From eq.(1) we get

and substituting into (2),

Now in this problem we have:
- The kinetic energy of the rocket is increased by a factor 8:

- The mass is reduced by half:

Substituting, we find the new momentum:

So, the momentum increases by a factor of 2.
Learn more about momentum and kinetic energy:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
brainly.com/question/6536722
#LearnwithBrainly
To determine the force that acts on the mass, just multiply the mass by the gravitational field. Using the given data,
F = (2.50 kg)(14 N/kg) = 35 N
Therefore, the force that acts on the mass is equal to 35 N.
Answer:
The answer to the question is
The ladybug begins to slide
Explanation:
To solve the question we assume that the frictional force of the ladybug and the gentleman bug are the same
Where the frictional force equals
= μ×N = m×g×μ
and the centripetal force is given by m·ω²·r
If we denote the properties of the ladybug as 1 and that of the gentleman bug as 2, we have
m₁×g×μ = m₁·ω²·r₁ ⇒ g×μ = ω²·r₁
and for the gentleman bug we have
m₂×g×μ = m₂·ω²·r₂ ⇒ g×μ = ω²·r₂
But r₁ = 2×r₂
Therefore substituting the values of r₁ =2×r₂ we have
g×μ = ω²·r₁ = g×μ = ω²·2·r₂
Therefore ω²·r₂ = 0.5×g×μ for the ladybug. That is the ladybug has to overcome half the frictional force experienced by the gentleman bug before it start to slide
The ladybug begins to slide
Answer:
D. location
Explanation:
The gravitational field strength of Earth is determined by the virtue of the location within the Earth's gravitational field.
That's why all objects regardless of their mass, shape, and size free fall towards the Earth with an acceleration equal to the acceleration at that location in the absence of air resistance.
According to the gravitational force between two bodies, the force experienced by one body due to the other is independent of its own mass.
The gravitational force is given by equation
F = GMm/r²
If F is the force acting on the smaller body of mass 'm', then
F = ma
Therefore, the equation becomes,
ma = GMm/r²
a = GM/r²
The value of 'a' changes with respect to the value of 'r' such that if 'r' is the radius of the Earth, then the acceleration at a height 'h' from Earth surface is given by
a = GM/(r+h)²
Here it is clear that the acceleration at any point is only the inherent property of the Earth itself.
The gravitational field strength of Earth is determined by the virtue of the location within the Earth's gravitational field.