Solve the following system:{12 x = 54 - 6 y | (equation 1)-17 x = -6 y - 62 | (equation 2)
Express the system in standard form:{12 x + 6 y = 54 | (equation 1)-(17 x) + 6 y = -62 | (equation 2)
Swap equation 1 with equation 2:{-(17 x) + 6 y = -62 | (equation 1)12 x + 6 y = 54 | (equation 2)
Add 12/17 × (equation 1) to equation 2:{-(17 x) + 6 y = -62 | (equation 1)0 x+(174 y)/17 = 174/17 | (equation 2)
Multiply equation 2 by 17/174:{-(17 x) + 6 y = -62 | (equation 1)0 x+y = 1 | (equation 2)
Subtract 6 × (equation 2) from equation 1:{-(17 x)+0 y = -68 | (equation 1)0 x+y = 1 | (equation 2)
Divide equation 1 by -17:{x+0 y = 4 | (equation 1)0 x+y = 1 | (equation 2)
Collect results:Answer: {x = 4 {y = 1
Please note the { are supposed to span over both equations but it interfaces doesn't allow it. Please see attachment for clarification.
Answer:
Resulting figure after plotting the given coordinates (0, 2) (4, 6) (10, 12) (18, 20) is a LINE.
Step-by-step explanation:
Please find the attached document for figure plotted.
Answer:
it 5.5⋅10−^8m
Step-by-step explanation:
Unless I'm missing something important here, you can find the difference between the two wavelengths by subtracting one from the other. Since you're interested in finding how much longer the wavelength associated with the orange light is, subtract the wavelength of the green light from the wavelength of the orange light. You know that the two measured wavelengths are 6.15 ⋅ 10 − 7 m → orange light 5.6 ⋅ 10 − 7 m → green light Therefore, the difference between the two wavelengths will be Δ wavelength = 6.15 ⋅ 10 − 7 m − 5.6 ⋅ 10 − 7 m = 5.5 ⋅ 10 − 8 m
1) Firstly, let's set a proportion to find out how mny cups of almonds are needed.
muffins cups of almonds
6 3/4
12 x
2)
Cross multiplying it:
6x = 12 * 3/4
6x = 9
x= 9/6
3