The number of molecules in one mole of any substance is equal to Avagadro's number
Avagadro's number is 6.023 X 10²³
Thus
1 mole = 6.023 X 10²³ molecules
for ammonia we are provided with three moles
so to obtain the total number of molecules of ammonia in three moles we will multiply the Avagadro's number with three
total molecules = 3 X 6.023 X 10²³
Total molecules of ammonia = 18.069 X 10²³
In scientific notation
Total molecules of ammonia = 1.8069 X 10²⁴ = 1.81 X 10²⁴
Answer:
It raises the boiling point and lowers the freezing point.
Explanation:
It is used as antifreeze in the cooling circuits of internal combustion engines, that is, it is used to reduce the melting point of the solution.
By adding ethylene glycol I'm not only bringing the melting point to -13°C, but the boiling point of ethylene glycol is 197°C.
since these substances not only lower the freezing point but also increase the boiling point, they are also called a colligative agent
Answer:
0.333 mol NH₃
Explanation:
N₂ + 3 H₂ ⇆ 2 NH₃
This is the reaction that produces NH₃. Use the mole ratios to solve. For every 3 moles of H₂ that are consumed, 2 moles of NH₃ are produced.
(0.500 mol H₂) × (2 mol NH₃/3 mol H₂) = 0.333 mol NH₃
You will produce 0.333 moles of NH₃.
The new volume when pressure increases to 2,030 kPa is 0.8L
BOYLE'S LAW:
The new volume of a gas can be calculated using Boyle's law equation:
P1V1 = P2V2
Where;
- P1 = initial pressure (kPa)
- P2 = final pressure (kPa)
- V1 = initial volume (L)
- V2 = final volume (L)
According to this question, a 4.0 L balloon has a pressure of 406 kPa. When the pressure increases to 2,030 kPa, the volume is calculated as:
406 × 4 = 2030 × V2
1624 = 2030V2
V2 = 1624 ÷ 2030
V2 = 0.8L
Therefore, the new volume when pressure increases to 2,030 kPa is 0.8L.
Learn more about Boyle's law calculations at: brainly.com/question/1437490?referrer=searchResults