1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
3 years ago
13

Write the word and balanced chemical equations for the reaction between:

Chemistry
1 answer:
Greeley [361]3 years ago
5 0

Answer:

HCl + Ca(OH)2 = CaCl2 + H2O - Chemical Equation Balancer.

You might be interested in
Ethylene oxide (EO) is prepared by the vapor-phase oxidation of ethylene. Its main uses are in the preparation of the antifreeze
Rashid [163]

Answer:

a. ΔH^0_{rxn} = -108.0\frac{kJ}{mol}

b. 320.76° C

Explanation:

a.)

we can solve this type of question (i.e calculate ΔH^0_{rxn} , for the gas-phase reaction )  using the Hess's Law.

ΔH^0_{rxn} =  E_{product} deltaH^0_{t}-E_{reactant} deltaH^0_{t}

Given from the question, the table below shows the corresponding  ΔH^0_{t}(kJ/mol) for each compound.

Compound                    H^0_{t}(kJ/mol)

Liquid EO                       -77.4

CH_4_(g_)                            -74.9                

CO_(g_)                              -110.5

If we incorporate our data into the above previous equation; we have:

ΔH^0_{rxn} = (-110.5 kJ/mol + (-74.9 kJ/mol) ) - (-77.4 kJ/mol)

          =   -108.0 \frac{kJ}{mol}

b.)

We are to find the final temperature if the average specific heat capacity of the products is 2.5 J/g°C

Given that:

the specific heat capacity (c) = 2.5 J/g°C

T_{initial} = 93.0°C   &

the  enthalpy of vaporization  (ΔH^0_{vap}) = 569.4 J/g

If, we recall; we will remember that; Specific Heat Capacity is the amount of heat needed to raise the temperature of one gram of a substance by one kelvin.

∴ the specific heat capacity (c) is given as =  \frac{Heat(q)}{mass*changeintemperature(T_{initial}-T_{final})}

Let's not forget as well, that  ΔH^0_{vap} = \frac{q}{mass}

If we substitute  ΔH^0_{vap}  for  \frac{q}{mass} in the above equation, we have;

specific heat capacity (c) = \frac{deltaH^0_{vap}}{T_{final}-T_{initial}}

Making (T_{final}- T_{initial}) the subject of the formula; we have:

T_{final}- T_{initial}  = \frac{delat H^0_{vap}}{specificheat capacity}

(T_{final}-93.0^0C)=\frac{569.4J/g}{2.5J/g^0C}

T_{final}=\frac{569.4J/g}{2.5J/g^0C}+93.0^0C

         = 227.76°C +93.0°C

          = 320.76°C

∴ we can thereby conclude that the final temperature = 320.76°C                

7 0
3 years ago
The metabolic oxidation of glucose, C6H12O6, in our bodies produces CO2, which is expelled from our lungs as a gas.
enot [183]

Answer:

\large \boxed{\text{21.6 L}}

Explanation:

We must do the conversions

mass of C₆H₁₂O₆ ⟶ moles of C₆H₁₂O₆ ⟶ moles of CO₂ ⟶ volume of CO₂

We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.

Mᵣ:        180.16

         C₆H₁₂O₆ + 6O₂ ⟶ 6CO₂ + 6H₂O

m/g:      24.5

(a) Moles of C₆H₁₂O₆

\text{Moles of C$_{6}$H$_{12}$O}_{6} = \text{24.5 g C$_{6}$H$_{12}$O}_{6}\times \dfrac{\text{1 mol C$_{6}$H$_{12}$O}_{6}}{\text{180.16 g C$_{6}$H$_{12}$O}_{6}}\\\\= \text{0.1360 mol C$_{6}$H$_{12}$O}_{6}

(b) Moles of CO₂

\text{Moles of CO}_{2} =\text{0.1360 mol C$_{6}$H$_{12}$O}_{6} \times \dfrac{\text{6 mol CO}_{2}}{\text{1 mol C$_{6}$H$_{12}$O}_{6}} = \text{0.8159 mol CO}_{2}

(c) Volume of CO₂

We can use the Ideal Gas Law.

pV = nRT

Data:

p = 0.960 atm

n = 0.8159 mol

T = 37  °C

(i) Convert the temperature to kelvins

T = (37 + 273.15) K= 310.15 K

(ii) Calculate the volume

\begin{array}{rcl}pV &=& nRT\\\text{0.960 atm} \times V & = & \text{0.8159 mol} \times \text{0.082 06 L}\cdot\text{atm}\cdot\text{K}^{-1}\text{mol}^{-1} \times \text{310.15 K}\\0.960V & = & \text{20.77 L}\\V & = & \textbf{21.6 L} \\\end{array}\\\text{The volume of carbon dioxide is $\large \boxed{\textbf{21.6 L}}$}

7 0
2 years ago
A hot toluene stream, which has mass flow rate of 8.0 kg/min, is cooled by cooling water in a cocurrent heat exchanger; its temp
Alex Ar [27]

Complete Question  

The complete question is shown on the first question

Answer:

a) The duty of the heat exchanger is given as 6.8658 KJ /sec

b) The temperature of the water leaving the exchanger is TOUT = 29.84 ⁰C

c) The log mean difference is given as TZ = 47.317 ⁰ C

d) the UA value is UA = 145.10

Explanation:

The explanation is uploaded on the first and second ,third and fourth image

3 0
3 years ago
What is the result at the end of meiosis II?
VMariaS [17]

Answer:

B.) two diploid cells

6 0
3 years ago
Indicate whether each of the following statements is correct or incorrect.1)Every Bronsted-Lowry acid is also a Lewis acid2)Ever
Hunter-Best [27]

Answer:

1) correct

2) incorrect

3) correct

4)incorrect

Explanation:

1) A Lewis acid is a substance that accepts a nonbonding pair of electrons.

A Bronsted-Lowry acid is a substance that donates a proton H⁺

Since the donation of a proton involves the acceptance of a pair of electrons, every Bronsted-Lowry acid is also a Lewis acid.

2)A Lewis acid not necessarily needs to have a proton to be donated.

3) Conjugated acids of weak bases are strong acids and conjugated acids of strong bases are weak acids.

4)K⁺ comes from a strong base, therefore is does not have an acidic behaviour.

4 0
3 years ago
Other questions:
  • NEED HELP ASAP! I will post the observation now in different question​
    10·1 answer
  • Water has a density of 0.997 g/cm^3 at 25 degrees C; ice has a density of 0.917 g/cm^3 at -10 degrees C. (question part a) If a
    8·2 answers
  • According to the information above what is the standard enthalpy of formation for nh3
    10·1 answer
  • If you were building a device that used a chemical reaction to preserve food, like those used in refrigerators, what kinds of re
    9·1 answer
  • What are the three types of scientific investigations?
    11·2 answers
  • Please help ASAP PLEASE
    9·1 answer
  • What is the acceleration of a 100kg object being pushed with a force of 1000 newton's
    6·1 answer
  • Given the following skeleton equation, what are the coefficients for the chemicals in the reaction? __H20 + __ P4O10 = __ H3PO4
    5·1 answer
  • What is the main limitation of using renewable energy sources?.
    11·1 answer
  • Select the correct answer.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!