Explanation:
Atomic number of magnesium is 12 and its electronic distribution is 2, 8, 2. On the other hand, atomic number of iodine is 53 and its electronic configuration is
.
Hence, there are 7 valence electrons in an iodine atom and there are 2 valence electrons in a magnesium atom.
So, one atom of iodine requires one electron from a donor atom to complete its octet. But one magnesium atom contains two valence electrons.
Therefore, one magnesium atom will combine with two iodine atoms to result in the formation of magnesium iodide as follows.

Therefore, an ionic bond will be formed when magnesium reacts with iodine to make magnesium iodide.
Answer: , 4 molecules of ammonia, NH3(g) is produced; 2 molecules of ammonia, NH3(g) is produced respectively
Explanation:
The balanced equation is stated below N2(g) + 3H2(g) → 2NH3(g)
1 mole of N2(g) reacts with 3 moles of H2(g) to yield 2 moles of NH3(g)
1) If 2 molecules of N2 react, then the balanced equation will be
2N2(g) + 6H2(g) → 4NH3(g)
Thus, 4 molecules of ammonia, NH3(g) is produced
2) If 3 molecules of H2 react, then the balanced equation will be
N2(g) + 3H2(g) → 2NH3(g)
Thus, 2 molecules of ammonia, NH3(g) is produced
A. Carbon monoxide
b. Phosphorous trichloride
c.
d.nitrogen
e. Water- Hydrogen - Oxygen
f.
Molecular weight of MgSO3 = 104.3682 g/mol
181 g / 104.3682 g/mol
= 1.73 g