Answer:
NaCl will only conduct electricity in solutions
Explanation:
For electrical conduction, free mobile electrons as seen in most metals must be present or ions which are charged particles must be available for solutions and molten substances.
- Sodium chloride is an ionic compound without free mobile electrons or ions despite being ionic.
- It will maintain a subtle and unique charge stability when in solid form.
- In solid, the ions are not free to move and remain locked up in the solid mass.
- When introduced into a solution, the ions becomes free to move and this will aid electrical conduction.
Answer:
a. Ksp = 4s³
b. 5.53 × 10⁴ mol³/dm⁹
Explanation:
a. Obtain an expression for the solubility product of AB2(S),in terms of s.
AB₂ dissociates to give
AB₂ ⇄ A²⁺ + 2B⁻
Since 1 mole of AB₂ gives 1 mole of A and 2 moles of B, we have the mole ratio as
AB₂ ⇄ A²⁺ + 2B⁻
1 : 1 : 2
Since the solubility of AB₂ is s, then the solubility of A is s and that of B is 2s
So, we have
AB₂ ⇄ A²⁺ + 2B⁻
[s] [s] [2s]
So, the solubility product Ksp = [A²⁺][B⁻]²
= (s)(2s)²
= s(4s²)
= 4s³
b. Calculate the Ksp of AB₂, given that solubility is 2.4 × 10³ mol/dm³
Given that the solubility of AB is 2.4 × 10³ mol/dm³ and the solubility product Ksp = [A²⁺][B⁻]² = 4s³ where s = solubility of AB = 2.4 × 10³ mol/dm³
Substituting the value of s into the equation, we have
Ksp = 4s³
= 4(2.4 × 10³ mol/dm³)³
= 4(13.824 × 10³ mol³/dm⁹)
= 55.296 × 10³ mol³/dm⁹
= 5.5296 × 10⁴ mol³/dm⁹
≅ 5.53 × 10⁴ mol³/dm⁹
Ksp = 5.53 × 10⁴ mol³/dm⁹
Answer:
Chlorine is more likely to steal a valence electron from sodium.
Explanation:
Sodium is number 11 on the periodic table with one valence electron. Belonging to the first group, it's one of the alkali metal, which are known to be highly reactive. Chlorine is number 17 with seven valence electrons, and it's in the second-to-last group of halogens--also very reactive.
Considering that elements with one valence electron are just about 100% likely to give up electrons to reach a stable state, sodium would be the element that is more likely to lose its valence electron to chlorine. In other words, chlorine would be the electron thief.
22.4 molecules are in 4.48 liters of CO 2