By using Coulomb's law, we want to find the value of q₁ given that q₂ experiences no net electric force. We will find that q₁ = 8nC
<h3>Working with Coulomb's law.</h3>
Coulomb's law says that for two charges q₁ and q₂ separated by a distance r, the force that each one experiences is:

Where k is a constant
Here we can see that q₂ interacts with two charges, then the total force on q₂ will be:

And we know that it must be equal to zero, so we can write it as:

The parenthesis must be equal to zero, so we can write:

And now we can solve this for q₁ to get:

If you want to learn more about Coulomb's law, you can read:
brainly.com/question/24743340
Answer:
acceleration = 1.79 m/s^2
Tension = 6817 N
Explanation:
First let's find Elizabeth's weight:

Her weight is greater than the normal force (N = 450 N), so the elevator is going downwards.
The acceleration of Elizabeth is given by:

Where P is the weight of Elisabeth, N is her normal force, m is her mass and a is the acceleration. Then, we have that:


The tension in the cable is given by:

In this case, we use the total mass, so we have:


Answer:
Explanation:
You can decompose those vectors into their components in x and y direction. For the first vector:

For the second vector:

The sum of two vectors will be:

The magnitude of the sum of two vectors is:
meter