The frequency of a wave represents B. the number of wave cycles that pass through a specific point within a given time.
The distance between two consecutive crests and the length of a wave are the <em>wavelength</em>.
The distance between the highest and lowest points of a wave is <em>twice the amplitude</em>.
Answer:
514.5 g.
Explanation:
- The balanced equation of the reaction is: 2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O.
- It is clear that every 2.0 moles of NaOH react with 1.0 mole of H₂SO₄ to produce 1.0 mole of Na₂SO₄ and 2.0 moles of 2H₂O.
- Since NaOH is in excess, so H₂SO₄ is the limiting reactant.
- We need to calculate the no. of moles of 355.0 g of H₂SO₄:
n of H₂SO₄ = mass/molar mass = (355.0 g)/(98.0 g/mol) = 3.622 mol.
Using cross multiplication:
∵ 1.0 mol H₂SO₄ produces → 1.0 mol of Na₂SO₄.
∴ 3.622 mol H₂SO₄ produces → 3.662 mol of Na₂SO₄.
- Now, we can get the theoretical mass of Na₂SO₄:
∴ mass of Na₂SO₄ = no. of moles x molar mass = (3.662 mol)(142.04 g/mol) = 514.5 g.
Answer:
They gave you the equation; Cp=,
just plug everything in! You’ve seen this; I have long ago, but we had different units. Sorry, but it’s right there! Go get it!
Explanation:
Answer:
Alkaline
Explanation:
In an alkaline solution, red litmus paper turns blue. When an alkaline compound dissolves in water, it produces hydroxide ions, which cause the solution to become alkaline.
The solute has to be hydrophilic, (water loving).