Work = Force times Distance
W = Fd
Given W = 750J, F = 125N;
750 = 125d
Solving for d:
d = 750/125
d = 6
The box moved a distance of 6 meters.
<span>when it returns to its original level after encountering air resistance, its kinetic energy is
decreased.
In fact, part of the energy has been dissipated due to the air resistance.
The mechanical energy of the ball as it starts the motion is:
</span>

<span>where K is the kinetic energy, and where there is no potential energy since we use the initial height of the ball as reference level.
If there is no air resistance, this total energy is conserved, therefore when the ball returns to its original height, the kinetic energy will still be 100 J. However, because of the presence of the air resistance, the total mechanical energy is not conserved, and part of the total energy of the ball has been dissipated through the air. Therefore, when the ball returns to its original level, the kinetic energy will be less than 100 J.</span>
Answer:
z
Explanation:
x repersents a new moon and the others repersent quarter moons
(x is a new moon because new moons are often the phase when the moon is close to earths sun)
Answer:
Perpendicular to the surface
Explanation:
- Electric field lines represent the direction of the electric field. The electric field lines also correspond to the direction along which the gradient of the electric potential is maximum.
- Equipotentials are lines or surfaces along which the electric potential is constant: the electric potential does not change moving along an equipotential surface.
Given the two definitions, equipotential lines are always perpendicular to the electric field lines. Therefore, in this problem, the direction of the electric field is perpendicular to the spherical equipotential surface.
Blue light will bend more than the others because it has a slightly greater refractive index. This is because blue light has a shorter wavelength and more energy, meaning it has to slow down more than the others when it hits the water.