Answer:
spring deflection is x = (v2 / R + g) m / 4
Explanation:
We will solve this problem with Newton's second law. Let's analyze the situation the car goes down a road and finds a dip (hollow) that we will assume that it has a circular shape in the lower part has the car weight, elastic force and a centripetal acceleration
Let's write the equations on the Y axis of this description
Fe - W = m 
Where Fe is elastic force, W the weight and
the centripetal acceleration. The elastic force equation is
Fe = - k x
4 (k x) - mg = m v² / R
The four is because there are four springs, R is theradio of dip
We can calculate the deflection (x) of the springs
x = (m v2 / R + mg) / 4
x = (v2 / R + g) m / 4
Answer : The correct option is, (D) A machine does 400 joules of work in 5 seconds.
Explanation :
Power : It is defined a the rate of doing work per unit time.
Formula used :

where,
P = power
w = work done
t = time
Now we have to determine the rate of power for the following options.
(A) A machine does 200 joules of work in 10 seconds.

(B) A machine does 400 joules of work in 10 seconds.

(C) A machine does 200 joules of work in 5 seconds.

(D) A machine does 400 joules of work in 5 seconds.

From this we conclude that, a machine does 400 joules of work in 5 seconds has the highest rate of power.
Hence, the correct option is, (D)
Use the density formula:
Mass of the substance
————————————
Volume of the substance
This gives you the density.
Corn syrup has a density of about 1.4 grams per cubic centimeter, and has the highest density of all liquids!
Hope this helps!
The best tree stand safety harness is the Hunter Safety System Hybrid Flex Safety Harness, with its awesome ElimiShield Scent Control Technology.
Moreover, These stands are designed to be attached directly to the tree. Hunters using a fixed or suspended stand must choose a method of climbing up and down from the platform. The safest and most used method is sectional ladders.
You can learn more about this at:
brainly.com/question/28335498#SPJ4
Acceleration = (change in speed) / (time for the change)
change in speed = (speed at the end) minus (speed at the beginning)
change in speed = (zero) minus (28 m/s) = -28 m/s
Acceleration = (-28 m/s) / (13 sec)
Acceleration = -2.15 m/s²