Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
In order to describe motion along a straight line, you must state the speed and direction of the motion. Those two quantities, together, comprise what's known as "velocity".
Answer:
Weather is the conditions (temperature, wind etc.) at a given time, like on that day. Climate, which is what his data would show, is the conditions over an extended period of time like the 3 months he collected data
Answer:
Therefore, we need an invert, and a rectifier, along with the transformer to do the job.
Explanation:
A transformer, alone, can not be used to convert a DC voltage to another DC voltage. If we apply a DC voltage to the primary coil of the transformer, it will act as short circuit due to low resistance. It will cause overflow of current through winding, resulting in overheating pf the transformer.
Hence, the transformer only take AC voltage as an input, and converts it to another AC voltage. So, the output voltage of a transformer is also AC voltage.
So, in order to convert a 6 V DC to 1.5 V DC we need an inverter to convert 6 V DC to AC, then a step down transformer to convert it to 1.5 V AC, and finally a rectifier to convert 1.5 V AC to 1.5 V DC.
<u>Therefore, we need an invert, and a rectifier, along with the transformer to do the job.</u>