Acceleration occurs whenever the forces on an object are unbalanced.
It's the group of forces on the object that's either balanced or unbalanced.
There's no such thing as "an unbalanced force".
In order to delete a file, it is required to first select the file which you want to delete and then select 'delete' from the file menu. It will then ask you to confirm the deletion which will be required in order to complete the file deletion process.
It isn't required to click on the X at the top right of the screen or to open the file you want to delete as these steps aren't relevant to the deletion process.
Hence, the statements which describe the steps you need to take in order to delete a file are as follows:
- Confirm the deletion.
- Select Delete from the File menu.
- Select the file you want to delete.
Answer:
A) the maximum acceleration the boulder can have and still get out of the quarry
B) how long does it take to be lifted out at maximum acceleration if it started from rest
Explanation:
A)
let +y is upward. look below at the free body diagram. the mass M refers to the combined mass of the boulder and chain.
the weight of the chain is:
and maximum tension is 
total mass and weight is :


∑



B)
maximum acceleration

using 
to solve for t


Answer:
when you tell someone over and over to stop bothering you and they dont so i think you should tell a teacher
Explanation:
1. C. Gravitational attraction exists between the two objects.
Explanation:
Gravitational attraction is always exerted between two objects which have mass, and its magnitude is given by:

where G is the gravitational constant, m1 and m2 the masses of the two objects, and r the separation between them. Since the two objects have for sure non-zero masses m1 and m2, even if they are 20 miles apart, the value of the gravitational attraction F is non-zero, so the correct answer is C.
2. D. Two atoms come together to form a molecule.
Explanation:
this outcome is actually caused by the electrostatic forces between the two atoms, not by gravitational force. In fact, gravitational force becomes relevant only when the masses of the two objects involved are large enough: this is the case for planets, stars, galaxies, and objects in the universe. However, two atoms have very small masses, so the gravitational force between them is really negligible. On this smaller scales, the electrostatic force is much stronger than the gravitational force, so the electrostatic force is the real responsible for the formation of bonds between atoms.