1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margaret [11]
3 years ago
7

The towline exerts a force of p = 4 kn at the end of the 20-m-long crane boom. if u = 30, determine the placement x of the hook

at a so that this force creates a maximum moment about point o . what is this moment?
Physics
1 answer:
Illusion [34]3 years ago
7 0

Answer:

The answer is 80 kN . m (clockwise)

Explanation:

As,

M = P x L

Here, the towline exerts a force is P.

Substituting P for 4000N.

M = -4000N x 20m

   = -80000N.m

   = 80kN.m

Maximum moment about the point O is 80kN.m (Clockwise)

You might be interested in
What is happening in the brain, because people are so rude?
Masteriza [31]
That's a good question.
8 0
3 years ago
Read 2 more answers
You purchase a ten-year 1,000 bond with semiannual coupons for 982. The bond has a 1,100 redemption payment at maturity, a nomin
vladimir2022 [97]

Answer:

ummmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

6 0
3 years ago
A circular radar antenna on a Coast Guard ship has a diameter of 2.10 m and radiates at a frequency of 16.0 GHz. Two small boats
Anna35 [415]

Answer:

d = 76.5 m

Explanation:

To find the distance at which the boats will be detected as two objects, we need to use the following equation:

\theta = \frac{1.22 \lambda}{D} = \frac{d}{L}

<u>Where:</u>

θ: is the angle of resolution of a circular aperture

λ: is the wavelength

D: is the diameter of the antenna = 2.10 m

d: is the separation of the two boats = ?

L: is the distance of the two boats from the ship = 7.00 km = 7000 m

To find λ we can use the following equation:

\lambda = \frac{c}{f}

<u>Where:</u>

c: is the speed of light = 3.00x10⁸ m/s

f: is the frequency = 16.0 GHz = 16.0x10⁹ Hz

\lambda = \frac{c}{f} = \frac{3.00 \cdot 10^{8} m/s}{16.0 \cdot 10^{9} s^{-1}} = 0.0188 m            

Hence, the distance is:

d = \frac{1.22 \lambda L}{D} = \frac{1.22*0.0188 m*7000 m}{2.10 m} = 76.5 m

Therefore, the boats could be at 76.5 m close together to be detected as two objects.

 

I hope it helps you!

7 0
3 years ago
How to do this question about lens? Please help.
hichkok12 [17]

Its six cm mate because you are multiply the numbers together then that total with the number of sides there are

4 0
3 years ago
How does Newton describe the dependence of acceleration of a body on its mass and the net applied force?
tatiyna
<h2>Isaac Newton's First Law of Motion states, "A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force." What, then, happens to a body when an external force is applied to it? That situation is described by Newton's Second Law of Motion.  </h2><h2> equation as ∑F = ma </h2><h2> </h2><h2>The large Σ (the Greek letter sigma) represents the vector sum of all the forces, or the net force, acting on a body.  </h2><h2> </h2><h2>It is rather difficult to imagine applying a constant force to a body for an indefinite length of time. In most cases, forces can only be applied for a limited time, producing what is called impulse. For a massive body moving in an inertial reference frame without any other forces such as friction acting on it, a certain impulse will cause a certain change in its velocity. The body might speed up, slow down or change direction, after which, the body will continue moving at a new constant velocity (unless, of course, the impulse causes the body to stop). </h2><h2> </h2><h2>There is one situation, however, in which we do encounter a constant force — the force due to gravitational acceleration, which causes massive bodies to exert a downward force on the Earth. In this case, the constant acceleration due to gravity is written as g, and Newton's Second Law becomes F = mg. Notice that in this case, F and g are not conventionally written as vectors, because they are always pointing in the same direction, down. </h2><h2> </h2><h2>The product of mass times gravitational acceleration, mg, is known as weight, which is just another kind of force. Without gravity, a massive body has no weight, and without a massive body, gravity cannot produce a force. In order to overcome gravity and lift a massive body, you must produce an upward force ma that is greater than the downward gravitational force mg.  </h2><h2> </h2><h2>Newton's second law in action </h2><h2>Rockets traveling through space encompass all three of Newton's laws of motion. </h2><h2> </h2><h2>If the rocket needs to slow down, speed up, or change direction, a force is used to give it a push, typically coming from the engine. The amount of the force and the location where it is providing the push can change either or both the speed (the magnitude part of acceleration) and direction. </h2><h2> </h2><h2>Now that we know how a massive body in an inertial reference frame behaves when it subjected to an outside force, such as how the engines creating the push maneuver the rocket, what happens to the body that is exerting that force? That situation is described by Newton’s Third Law of Motion.</h2><h2 />
4 0
3 years ago
Other questions:
  • What is friction and how does it affect objects in motion?
    8·2 answers
  • Can someone please help with this?
    13·1 answer
  • \. A mixture of gases con-tains oxygen, nitrogen, and water vapor. What physical process could you use to remove the water vapor
    8·1 answer
  • What is the wavelength of an earthquake wave if it has a speed of 7 km/s and a frequency of 12 Hz?
    7·1 answer
  • When an electric current flows through a long conductor, each free electron moves
    14·2 answers
  • What does the potential energy diagram of a chemical reaction tell you
    9·2 answers
  • The sun is 1.5 × 108 km from Earth. The index of refraction for water is 1.349. How much longer would it take light from the sun
    5·1 answer
  • A cubic meter (m³) is ______ a cubic centimeter (cm³).
    13·1 answer
  • Convert the decimal number 61078 to binary by using sum-of-weights method​
    15·1 answer
  • A tennis player tosses a tennis ball straight up and then catches it after 2.07 s at the same height as the point of release.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!