<u>Answer:</u> The
for the reaction is -1052.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times \Delta H_1]+[1\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%5CDelta%20H_1%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1052.8 kJ.
Answer: A balanced equation for the given reaction is
.
Explanation:
The reaction equation will be as follows.

Number of atoms on the reactant side is as follows.
Number of atoms on the product side is as follows.
Since number of atoms on both the reactant and product sides are equal. Hence, the reaction equation is balanced.
Thus, we can conclude that a balanced equation for the given reaction is
.
Answer:
#2 is melting ice and #3 is radiation
Explanation:
hope this helped
Extrusive rock because it takes longer to cool, making the crystal size larger