I believe the answer is A the 1st one
This answer is based on the electron configuration.
And you can use Aufbau's rule to predict the atomic number of the next elements.
Radon, Rn is the element number 86.
Following Aufbau's rules, the electron configuration of Rn is: [Xe] 6s2 4f14 5d10 6p6. This means that you are suming 2 + 14 + 10 + 6 = 32 electrons with respect to the element Xe.
You can verity that the atomic number of Xe is 54, so when you add 32 you get 54 + 32 = 86, which is the atomic number of Rn.
Again, as per Aufbau's rules, the next element of the same group or period is when the 6 electrons of the 7p orbital are filled. For that, they have to pass 32 elements whose orbitals are:
7s2 5f14 6d10 7p6: count the electrons added: 2 + 14 + 10 + 6 = 32, and that is why the next element wil have atomic number 86 + 32 = 118.
Now, when you go for a new series, you find a new type of orbital, the g orbital, for which the model predict there are 18 electrons to fill.
So the next element of the group will have ; 2 + 18 + 14 + 10 + 6 = 50 electrons, which means that the atomic number of this, not yet discovered element, has atomic number 118 + 50 = 168.
By the way the element with atomic number 118 was already discovdered at its symbol is Og. You can search that information in internet.
Answers: 118 and 168
Answer:
a nonspontaneous redox reaction
Answer:
what happened to it, have the gone extinct
<u>The Concept:</u>
We are given the density of a sample of the metal = 11.4 grams / cm³
and we need to find the volume occupied by a sample of 30.5 grams
For this solution, we will use dimensional analysis
from the given information, we can also say that the density of the metal is:
1 cm³ / 11.4 grams
If we multiply this value by 30.5 grams, the 'grams' in the numerator and the denominator will cancel out and we will be left with the volume occupied by 30.5 grams of the metal
<u>Solving for the volume:</u>
X 30.5 grams = (30.5 / 11.4) cm³
Volume of 30.5 grams of the sample = 2.68 cm³