Answer:
<h2>82.94 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 28.8 × 2.88 = 82.944
We have the final answer as
<h3>82.94 N</h3>
Hope this helps you
Answer:
brainly.com/question/11848211
^ Similar/same question as yours!
The pressure between two costs is proportional to the product of the charges.
If solely one of the expenses is decreased by way of a element of 3, then the pressure is decreased with the aid of a thing of 3.
If each prices are reduced by a thing of 3, then the pressure is reduced via a issue of 9.
By definition we have to:
LOG (k2 / k1)=(-Ea/R)*(1/T1-1/T2)
Where,
k1 = 0.0117 s-1
K2 = 0.689 s-1
T1 = 400.0 k
T2 = 450.0 k
R is the ideal gas constant
R = 8.314 KJ / (Kmol * K)
Substituting
ln (0.0117/0.689)=-Ea/(8.314)*((1/400)-(1/450))
Clearing Ea:
Ea = 122 kJ
answer
<span> the activation energy in kilojoules for this reaction is
</span> Ea = 122 kJ
<span>
</span>
m = mass of the partner which the cheerleader lifts = 59.6 kg
h = height to which the partner is lifted by the cheerleader = 0.749 m
g = acceleration due to gravity = 9.8 m/s²
work done by the cheerleader in lifting the partner is same as the potential energy gained by the partner.
W = work done by the cheerleader in lifting the partner
PE = potential energy gained
so W = PE
potential energy is given as
PE = mgh
hence
W = mgh
inserting the values in the above formula
W = 59.6 x 9.8 x 0.749
W = 437.5 J
this is the work done in lifting the partner once.
the cheerleader does this 30 times , hence the total work done is given as
W' = 30 W
W' = 30 x 437.5
W' = 13125 J