Answer:
c. 981 watts

Explanation:
Given:
- horizontal speed of treadmill,

- weight carried,

- grade of the treadmill,

<u>Now the power can be given by:</u>

(where grade is the rise of the front edge per 100 m of the horizontal length)

Answer:
B
Explanation:
Because vector Y is longer than vector X
so when you take a magnitude( without minus ) each other
you see that Y>X
Answer:
C. 39 m/s
Explanation:
First we need to calculate the total force required to move the train along the inclined plane. So, it is clear that the work done will be equal to the component of the weight that is parallel to the inclined plane, because there is no frictional force present:
Force = F = mg Sin θ
where,
m = mass of train = 3.3 x 10⁶ kg
g = 9.8 m/s²
θ = Angle of Inclination = 0.64°
Therefore,
F = (3.3 x 10⁶ kg)(9.8 m/s²)Sin 0.64°
F = 3.612 x 10⁵ N
Now, the formula for power is:
P = FV
V = P/F
where,
V = Velocity of Train = ?
P = Power of Engine = 14 MW = 1.4 x 10⁷ W
Therefore,
V = 1.4 x 10⁷ W/3.612 x 10⁵ N
V = 38.75 m/s
which is approximately equal to:
<u>C. 39 m/s</u>
I think its a higher frequency