<span>Dry cell battery
When an automotive battery is fully charged, the sulfuric acid and water mixture will have a specific gravity of about 1.3. Specific gravity is actually the difference in the weight of water in comparison to a specific fluid. It is measured by a hydrometer. The amount of charge in the battery is normally measured by the specific gravity of the battery. The specific gravity of water is 1 and anything less than one is considered less dense while anything that has a specific gravity of more than 1 is considered more dense than water. </span>
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Please see below solution:
1 lb Hg x (151.50/76 lb) = cost of 1 lb.
<span>cost 1 lb x (1g/453.6 g) = cost of 1 g.</span>
Answer:
energy known as the latent heat of vaporization is required to break the hydrogen bonds. At 100 °C, 540 calories per gram of water are needed to convert one gram of liquid water to one gram of water vapour under normal pressure.
Explanation:energy known as the latent heat of vaporization is required to break the hydrogen bonds. At 100 °C, 540 calories per gram of water are needed to convert one gram of liquid water to one gram of water vapour under normal pressure.
Answer:
moles of carbon dioxide produced are 410.9 mol.
Explanation:
Given data:
Mass of C₆H₁₄O₂ = 16.5 g
Moles of O₂ = 499 mol
Moles of CO₂ = ?
First of all we will write the balance chemical equation.
2C₆H₁₄O₂ + 17O₂ → 14CO₂ + 12H₂O
moles of C₆H₁₄O₂ = mass × molar mass
moles of C₆H₁₄O₂ = 16.5 g × 118 g/mol
moles of C₆H₁₄O₂ = 1947 mol
Now we compare the moles of CO₂ with moles of O₂ and C₆H₁₄O₂ from balance chemical equation.
O₂ : CO₂
17 : 14
499 : 14/17× 499 = 410.9 moles
C₆H₁₄O₂ : CO₂
2 : 14
1947 : 14/2× 1947 = 13629 moles
Oxygen will be limiting reactant so moles of carbon dioxide produced are 410.9 mol.
Answer:
Sn^2+(aq)/Sn^3+(aq)//F2(g)/2F-(aq)
Explanation:
In writing the shorthand notation for an electrochemical cell, the oxidation half cell is shown on the left hand side and the reduction half cell is shown on the right hand side. The oxidation half equation reflects electron loss while the reduction half equation reflects electron gain.