The ideal gas constant is a proportionality constant that is added to the ideal gas law to account for pressure (P), volume (V), moles of gas (n), and temperature (T) (R). R, the global gas constant, is 8.314 J/K-1 mol-1.
According to the Ideal Gas Law, a gas's pressure, volume, and temperature may all be compared based on its density or mole value.
The Ideal Gas Law has two fundamental formulas.
PV = nRT, PM = dRT.
P = Atmospheric Pressure
V = Liters of Volume
n = Present Gas Mole Number
R = 0.0821atmLmoL K, the Ideal Gas Law Constant.
T = Kelvin-degree temperature
M stands for Molar Mass of the Gas in grams Mol d for Gas Density in gL.
Learn more about Ideal gas law here-
brainly.com/question/28257995
#SPJ4
Answer:50 miles per hour 50/1hr
Explanation:100 divided by 2 is 50, divide 2 by 2 thats 1
Answer:
you should write about a book you read
Explanation:
because maybe you got really good things in it
or here is an example
Due to friction from sliding against the ground, the player decelerates in 1 direction. Thus his momentum decreases.
Answer:
The batteries would be connected in series while the bulbs would be connected in parallel
Explanation:
Power (W) = VI
where V = voltage, I = current and R = resistance
from V = IR , I = V/R
Power (W) now becomes = V (V/R) =
Power (W) =
from the above equation, power is directly dependent on voltage, hence the voltage has to be high for the power to be high and the power is also inversely dependent on the resistance (in this case the bulbs which act as the load)
- We have to batteries, when batteries are connected in series the total voltage becomes the summation of the two voltages hence giving a higher voltage and when they are connected in parallel their voltage remains the same. Since we want to get higher voltage we will connect the two batteries in series.
- we have two bulbs which are the resistance here, from the equation above the power is inversely dependent on the resistance so we would need its value to be minimal. When resistance is connected in series the resistance individual will be added to get the total resistance, hence the total resistance will be high but when the resistors are arranged in parallel you get the total resistance by applying the formula which will give us a lower resistance. Hence we would connect the bulbs in parallel.
Take note that the power from this connection should not exceed the bulbs power rating so as to avoid damage of the bulbs.