It's average speed during that 26 seconds was about 4.77 m/s. Without seeing the graph, we can't tell if it was going faster or slower at any particular time during that period. All we can tell is its average for the full interval.
Answer:
<em>b. Observe the radio waves coming from all dark matter; from the strength of the radio waves from each cluster, estimate the amount of dark matter needed to produce them.</em>
<em></em>
Explanation:
The universe is thought to be made up of 85% dark matters. <em>Dark matter is called dark because it does not appear to interact with the electromagnetic field, which means it doesn't absorb, reflect or emit electromagnetic radiation, and is therefore difficult to detect. This means that option b is wrong since radio wave is an electromagnetic wave</em>. Dark matter is a form of matter that makes up about a quarter of the total mass–energy density of the universe. Dark matter was theorized due a variety of astrophysical observations and gravitational effects that cannot be explained by accepted theories of gravity unless there were more matter in the universe than can be seen.
Answer:
the work done by the 30N force is 4156.92 J.
For this problem, they don´t ask you to determine the work of the total force applied in the block. They only want the work done for the force of 30N, with an angle of 30º respectively of the displacement and a traveled distance of 160m. So:
W=F·s·cos(α)=30N·160m·cos(30º)=4156.92J