Here is the answer for the three of them
<span>N20 = 16 e-
</span><span>SeCl2 =20
</span><span>PBr3 = 26
Remember that t</span><span>o find the valence electrons in an atom you need to identify what group the element is in. An element in group 1A has 1 valence electron. If the element is in group 2A, then it has two valence electrons.</span>
In order to form polymers, we need to chain molecules together. This involves making bonds between them.
Shifting H’s around doesn’t accomplish anything.
Forming more double bonds will have the opposite result, as it would make the molecules more stable and less likely to react with each other.
Adding oxygen to the molecule no longer makes it polybutene. That would likely result in the formation of some sort of ether, as hey would react to form a C-O-C Bond.
The only answer left is A. In order to form polyalkenes, we have to break a double bond so that it’s available to form more covalent bonds.
Hope this helps
Answer:
Electrons in a hydrogen atom must be in one of the allowed energy levels. If an electron is in the first energy level, it must have exactly -13.6 eV of energy.
...
Energy Levels of Electrons.
Energy Level Energy
1 -13.6 eV
2 -3.4 eV
3 -1.51 eV
4 -.85 eV
Answer:
energy required is 0.247kJ
Explanation:
The formula to use is Energy = nRdT;
Where n is number of mole
R is the molar gas constant
dT is the change in temperature
n = reacting mass of mercury / molar mass of mercury = 27.4/200.59 = 0.137
dT = final temperature - initial temperature = 376.20 - 158.30 = 217.90K
R = 8.314Jper mol per Kelvin
Energy = 0.137 x 8.314 x 217.90 = 247.12J
Energy in kJ= 247.12/1000= 0.247kJ