I believe that it most likely would be D.
Answer:
The freezing point of the solution is - 4.39 °C.
Explanation:
We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
density of water = 1 g/mL.
<em>So, the mass of 575 mL is 575 g = 0.575 kg.</em>
m is the molality of the solution (m = moles of solute / kg of solvent = (465 g / 342.3 g/mol)/(0.575 kg) = 2.36 m.
<em>∴ ΔTf = (Kf)(m</em>) = (-1.86 °C/m)(2.36 m) = <em>- 4.39 °C.</em>
<em>∵ The freezing point if water is 0.0 °C and it is depressed by - 4.39 °C.</em>
<em>∴ The freezing point of the solution is - 4.39 °C.</em>
Answer:
Approximately
.
Explanation:
Balanced equation for this reaction:
.
Look up the relative atomic mass of elements in the limiting reactant,
, as well as those in the product of interest,
:
Calculate the formula mass for both the limiting reactant and the product of interest:
.
.
Calculate the quantity of the limiting reactant (
) available to this reaction:
.
Refer to the balanced equation for this reaction. The coefficients of the limiting reactant (
) and the product (
) are both
. Thus:
.
In other words, for every
of
formula units that are consumed,
of
formula units would (in theory) be produced. Thus, calculate the theoretical yield of
in this experiment:
.
Calculate the theoretical yield of this experiment in terms of the mass of
expected to be produced:
.
Given that the actual yield in this question (in terms of the mass of
) is
, calculate the percentage yield of this experiment:
.
Mass of electrons are not included when calculating the atomic mass of element. Atomic mass of the element is equal to proton + neurons. Example the the mass number of Nitrogen can be calculated as 7 protons + 7 neutrons to give 14 . thus nitrogen has a mass number of 14
Answer:
The amount of NaOH required to prepare a solution of 2.5N NaOH.
The molecular mass of NaOH is 40.0g/mol.
Explanation:
Since,
NaOH has only one replaceable -OH group.
So, its acidity is one.
Hence,
The molecular mass of NaOH =its equivalent mass
Normality formula can be written as:
Substitute the given values in this formula to get the mass of NaOH required.

Hence, the mass of NaOH required to prepare 2.5N and 1L. solution is 100g