Answer:

Explanation:
In a single-displacement reaction, one element exchanges partners with another element in a compound.

This is a single-displacement reaction, because the element Fe exchanges partners with H in HCl.

This is not a single-displacement reaction, because it is a reaction between two compounds.
This is a double displacement reaction in which the K⁺ and H⁺ cations change partners with the anions.

This is not a single-displacement reaction. It is another double displacement reaction, in which the Na⁺ and H⁺ cations change partners with the anions.

This is a single-displacement reaction, because the element Ca exchanges partners with H in H₂O.
are not single-displacement reactions.
The answer for the following problem is mentioned below.
- <u><em>Therefore the final moles of the gas is 14.2 × </em></u>
<u><em> moles.</em></u>
Explanation:
Given:
Initial volume (
) = 230 ml
Final volume (
) = 860 ml
Initial moles (
) = 3.8 ×
moles
To find:
Final moles (
)
We know;
According to the ideal gas equation;
P × V = n × R × T
where;
P represents the pressure of the gas
V represents the volume of the gas
n represents the no of the moles of the gas
R represents the universal gas constant
T represents the temperature of the gas
So;
V ∝ n
= 
where,
(
) represents the initial volume of the gas
(
) represents the final volume of the gas
(
) represents the initial moles of the gas
(
) represents the final moles of the gas
Substituting the above values;
= 
= 14.2 ×
moles
<u><em>Therefore the final moles of the gas is 14.2 × </em></u>
<u><em> moles.</em></u>
The answer is C because it's asking for the location, not the type of element it is like a metal, nonmetal, or metalloid.
I don’t know I’m just answering for points I don’t know 12
Answer:
<h3>The answer is 5.34 mL</h3>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question
mass = 3.5 g
density = 0.655 g/mL
We have

We have the final answer as
<h3>5.34 mL</h3>
Hope this helps you