The rate law depicts the effect of concentration on reaction rate. Second mechanism 2NO(g) ⇄ N₂O₂(g) [fast], N₂O₂(g) + O₂(g) → 2NO₂(g) [slow] is most reasonable. Thus, option b is correct.
<h3>What is rate law?</h3>
Rate law and equation give the rate at which the reaction takes place under the influence of the concentration of the reactants. The balanced chemical reaction is given as,
2NO(g) + O₂(g) → 2NO₂(g)
The rate of the equation is given as,
rate = k [NO]² [O₂]
In a multi-step chemical reaction, the slowest step is the rate-determining step. The second mechanism is given as,
2NO (g) → N₂O₂ (g) [fast]
N₂O₂(g) +O₂(g) → 2NO₂ (g) [slow]
Rate is given as,
rate = k [N₂O₂] [O₂]
Therefore, option b. the second mechanism is the most reasonable.
Learn more about rate law, here:
brainly.com/question/14779101
#SPJ4
Answer: 1.48 atmosphere
Explanation:
Pressure in kilopascal = 150
Pressure in atmosphere = ?
Recall that 1 atmosphere = 101.325 kilopascal
Hence, 1 atm = 101.325 kPa
Z atm = 150 kPa
To get the value of Z, cross multiply
150 kPa x 1 atm = 101.325 kPa x Z
150 kPa•atm = 101.325 kPa•Z
Divide both sides by 101.325 kPa
150 kPa•atm/101.325 kPa = 101.325 kPa•Z/101.325 kPa
1.48 atm = Z
Thus, 150 kPa is equivalent to 1.48 atmospheres
So,
With addition, we the last digit we keep will be the one which is known for both individual values.
We know 2.13 to the hundredths, but we only know 1 to the ones. Therefore, we will round off in the ones place.
2.13 + 1 = 3.13 (unrounded)
= 3 (rounded)
Hope this helps!
The PH of water is 7 because it contains an equal amount of h and oh- ions.
Answer:
a) A satellite is warmed by sunlight.
Explanation:
Heat transfer by radiation mostly involves heat gain or heat loss from the Sun. In this case, Option A is the only option where sunlight is involved so it is the best example of heat transfer by radiation.