Answer:
4.186 m/s^2
Explanation:
First, convert km/hr to m/s:
(75 km/hr)(1000m/1km)(1hr/60min)(1min/60s) = 20.83 m/s
Then, divide 20.93 m/s by 5.0s
(20.93 m/s) / (5.0s) = 4.186 m/s^2
Answer:
, assuming that the gravitational field strength is
.
Explanation:
Notice that both the speed and the direction of motion of this block are constant. In other words, the velocity of this block is constant.
By Newton's Second Law, the net force on this block would be
. External forces on this block should be balanced. Thus, the magnitude of the (downward) weight of this block should be equal to the magnitude of the (upward) force that the boy applies on this block.
Let
denote the mass of this block. It is given that
. The weight of this block would be:
.
Hence, the force that the boy applies on this block would be upward with a magnitude of
.
The mechanical work that a force did is equal to the product of:
- the magnitude of the force, and
- the displacement of the object in the direction of the force.
The displacement of this block (upward by
) is in the same direction as the (upward) force that this boy had applied. Thus, the work that this boy had done would be the product of:
- the magnitude of the force that this boy exerted,
, and - the displacement of this block in the direction,
.
.
Answer:
200 N
Explanation:
For a body moving in uniform circular motion, the force acting on it will be <em>centripetal force</em> and its direction is <em>radially inward</em> , pointing to the center.
The radially inward acceleration, or the centripetal acceleration is given by :
a = v² / r
where v is the speed at which the body is moving and r is the radius of the circle
Given-
m = 55kg
v = 14.1 m/s
r= 55m
We know that F = ma
⇒ F = m ( v²/ r )
⇒ F = 55 x 14.1 x 14.1 / 55
⇒ F =14.1 x 14.1 = 200 N
∴ <em>The force acting is 200 N</em>.
When you're using a crowbar to lift a large rock, you are working against the force called


Gravity on Earth is what gives weight to all objects, it's defined as all things that have mass or energy are gravitated towards each other. Therefore when you're using a crowbar to lift a large rock, the weight is caused by
gravity.
I hope this helps you!