1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondor19780726 [428]
3 years ago
8

How does light and heat energy from the sun reach earth?

Physics
1 answer:
defon3 years ago
6 0

Explanation:

uuubbv. very ecrcvtyfyhc g you f gg and you are the one to give me the chance for a little bit of time and effort into this is 6.0 and if

You might be interested in
A battery with an emf of 24.0 V is connected to a resistive load. If the terminal voltage of the battery is 16.1 V and the curre
lions [1.4K]

Answer:

2.03 Ω

Explanation:

EMF: This can be defined as the potential difference of a cell when it is not delivering any current. The S.I unit of Emf is Volt.

The formula of emf is given as,

E = I(R+r)............................ Equation 1

Where E = Emf, I = current, R = External resistance, r = internal resistance.

Make r the subject of the equation

r = (E-IR)/I........................ Equation 2

Note: From ohm's law, V = IR.

r = (E-V)/I........................ Equation 3

Where V = Terminal voltage

Given: E = 24 V, I = 3.9 A, V = 16.1 V.

Substitute into equation 3

r = (24-16.1)/3.9

r = 7.9/3.9

r = 2.03 Ω

6 0
3 years ago
Explain what parallel medium boundaries do to the path of the wave after it travels through both boundaries. (air and water)
Brilliant_brown [7]

Answer:

The boundaries cause the waves to change direction an effect called <u>refraction.</u>

Explanation:

When a wave crosses a boundary between different materials, the speed of the wave and its wavelength changes.When passing from air to water the two properties (speed and wavelength) decreases, and the wave is observed to change direction as it crosses the boundary between the two material.The bending of the wave is called refraction.

7 0
3 years ago
Timed! I would really appreciate some help! thank you!
GenaCL600 [577]

Answer:

x = 5[km]

Explanation:

We must convert the time from minutes to hours.

t=30[min]*\frac{1h}{60min}= 0.5[h]\\

We know that speed is defined as the relationship between space and time.

v=x/t

where:

x = space [m]

t = time = 0.5 [h]

v = velocity [m/s]

Now replacing:

x = 10[\frac{km}{h} ]*0.5[h]\\x=5[km]

4 0
3 years ago
Mohs scale is used in describing which characteristic? luster toughness hardness crystal form
Lady_Fox [76]
The answer is hardness not luster 

3 0
3 years ago
Read 2 more answers
A puck of mass 0.110 kg slides across ice in the positive x-direction with a kinetic friction coefficient between the ice and pu
lara [203]

Answer:

a) Ffr = -0.18 N

b) a= -1.64 m/s2

c) t = 9.2 s

d) x = 68.7 m.

e) W= -12.4 J

f) Pavg = -1.35 W

g) Pinst = -0.72 W

Explanation:

a)

  • While the puck slides across ice, the only force acting in the horizontal direction, is the force of kinetic friction.
  • This force is the horizontal component of the contact force, and opposes to the relative movement between the puck and the ice surface, causing it to slow down until it finally comes to a complete stop.
  • So, this force can be written as follows, indicating with the (-) that opposes to the movement of the object.

       F_{frk} = -\mu_{k} * F_{n} (1)

       where μk is the kinetic friction coefficient, and Fn is the normal force.

  • Since the puck is not accelerated in the vertical direction, and there are only two forces acting on it vertically (the normal force Fn, upward, and  the weight Fg, downward), we conclude that both must be equal and opposite each other:

      F_{n} = F_{g} = m*g (2)

  • We can replace (2) in (1), and substituting μk by its value, to find the value of the kinetic friction force, as follows:

       F_{frk} = -\mu_{k} * F_{n} = -0.167*9.8m/s2*0.11kg = -0.18 N (3)

b)

  • According Newton's 2nd Law, the net force acting on the object is equal to its mass times the acceleration.
  • In this case, this net force is the friction force which we have already found in a).
  • Since mass is an scalar, the acceleration must have the same direction as the force, i.e., points to the left.
  • We can write the expression for a as follows:

        a= \frac{F_{frk}}{m} = \frac{-0.18N}{0.11kg} = -1.64 m/s2  (4)

c)

  • Applying the definition of acceleration, choosing t₀ =0, and that the puck comes to rest, so vf=0, we can write the following equation:

        a = \frac{-v_{o} }{t} (5)

  • Replacing by the values of v₀ = 15 m/s, and a = -1.64 m/s2, we can solve for t, as follows:

       t =\frac{-15m/s}{-1.64m/s2} = 9.2 s (6)

d)

  • From (1), (2), and (3) we can conclude that the friction force is constant, which it means that the acceleration is constant too.
  • So, we can use the following kinematic equation in order to find the displacement before coming to rest:

        v_{f} ^{2} - v_{o} ^{2} = 2*a*\Delta x  (7)

  • Since the puck comes to a stop, vf =0.
  • Replacing in (7) the values of v₀ = 15 m/s, and a= -1.64 m/s2, we can solve for the displacement Δx, as follows:

       \Delta x  = \frac{-v_{o}^{2}}{2*a} =\frac{-(15.0m/s)^{2}}{2*(-1.64m/s2} = 68.7 m  (8)

e)

  • The total work done by the friction force on the object , can be obtained in several ways.
  • One of them is just applying the work-energy theorem, that says that the net work done on the object is equal to the change in the kinetic energy of the same object.
  • Since the final kinetic energy is zero (the object stops), the total work done by friction (which is the only force that does work, because the weight and the normal force are perpendicular to the displacement) can be written as follows:

W_{frk} = \Delta K = K_{f} -K_{o} = 0 -\frac{1}{2}*m*v_{o}^{2} =-0.5*0.11*(15.0m/s)^{2}   = -12.4 J  (9)

f)

  • By definition, the average power is the rate of change of the energy delivered to an object (in J) with respect to time.
  • P_{Avg} = \frac{\Delta E}{\Delta t}  (10)
  • If we choose t₀=0, replacing (9) as ΔE, and (6) as Δt, and we can write the following equation:

       P_{Avg} = \frac{\Delta E}{\Delta t} = \frac{-12.4J}{9.2s} = -1.35 W (11)

g)

  • The instantaneous power can be deducted from (10) as W= F*Δx, so we can write P= F*(Δx/Δt) = F*v (dot product)
  • Since F is constant, the instantaneous power when v=4.0 m/s, can be written as follows:

       P_{inst} =- 0.18 N * 4.0m/s = -0.72 W (12)

7 0
3 years ago
Other questions:
  • Darryl throws a basketball at the gym floor. The ball bounces once on the floor and comes to rest in his coach’s hands. At which
    6·1 answer
  • How long does it take for a truck accelerating at 1.5 m/s^2 to got from rest to 75 km/hr
    12·1 answer
  • What effect does dropping the sandbag out of the cart at the equilibrium position have on the amplitude of your oscillation? Vie
    9·2 answers
  • 1. what information does the atomic mass of an element provide?
    15·2 answers
  • A direct result of european exploration of north america during the 1500s and early 1600s was the
    13·1 answer
  • You want to create an electric field vector E = &lt; 0, 5 104, 0&gt; N/C at location &lt; 0, 0, 0&gt;. Where would you place a p
    14·1 answer
  • Consider the following three concentric systems two thick shells and a solid sphere all conductors The radii in the increasing o
    6·1 answer
  • A 30 kg box is placed on a skateboard and pushed across the room with a velocity of 4 m/s. The pusher applies more force, increa
    8·1 answer
  • Which of the following accurately describes the process of Gas Exchange? *
    8·1 answer
  • Joaquin is at rest at the top of a hill on a skateboard. Four seconds later, he reaches the bottom of the hill at a final veloci
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!