Answer:

Explanation:
Given,
mass = 1.41 g = 0.00141 Kg
Electric field,E = 670 N/C.
We know,
Force in charge due to Electric field.
F = E q
And also we know
F = m g
Equating both the equation of motion
m g = E q

Charge of the particle is equal to 
Answer:
The magnitude of the electric field at a point equidistant from the lines is 
Explanation:
Given that,
Positive charge = 24.00 μC/m
Distance = 4.10 m
We need to calculate the angle
Using formula of angle



We need to calculate the magnitude of the electric field at a point equidistant from the lines
Using formula of electric field

Put the value into the formula



Hence, The magnitude of the electric field at a point equidistant from the lines is 
When Emmett is lifting a box
vertically, the forces that must be added to calculate the total force are: the
gravitational force, tension force(the force exerted by Emmett to the box and
the force exerted by the box to Emmett), and air resistance force.
A) a mouse, to an order of magnitude = 0.1 m ( a tenth of a meter ) That would be a big mouse but the alternatives are 1 meter or one hundredth of a meter... so go with 1/10th
<span>b) Easy = 1 meter </span>
<span>c) two choices 10m or 100 m . Go with 100 m </span>
<span>d) Stretch it out , trunk tip to tail tip - call it 10 m </span>
<span>e) Your choice 100 m or 1000 m..... These are estimates. So long as you are within one order of magnitude you can't really be given wrong. So I'd say 100m</span>
Answer:
o to increase the frequency of sound waves. It increases the sound waves to a level of frequency that humans cannot hear so you won't be able to hear many things though the wall other then low noises like pounding.
Explanation:
I am in construction class as well as a student teacher for other construction type programs trust me :D
Brainiest would be appreciated