Dalton hypothesized that atoms are indivisible and that all atoms of an element are identical. It is now known that <span>atoms are divisible. The answer is letter C</span>
Answer:
Frecuency = 5,83x10⁻⁷ Hz
Explanation:
The equation that connects wavelenght and frequency is given by:
λ = c/ν
λ=wavelenght (expressed in lenght´s units)
c= speed of light (3x10⁸ m/sec)
ν=frequency (expressed in units of time⁻¹ or Herzt)
In our case, λ=5,14x10⁻⁷ m , so replacing in our previous formula, this gives us the final result of ν (frequency for green light) of 5,83x10¹⁴ Hz (or Herzt)
Answer:
The correct answer is 199.66 grams per mole.
Explanation:
Based on law of effusion given by Graham, a gas rate of effusion is contrariwise proportionate to the square root of molecular mass, that is, rate of effusion of gas is inversely proportional to the square root of mass. Therefore,
R1/R2 = √ M2/√ M1
Here rate is the rate of effusion of the gas expressed in terms of number of mole per uni time or volume, and M is the molecular mass of the gas.
Rate Q/Rate N2 = √M of N2/ √M of Q
The molecular mass of N2 or nitrogen gas is 28 grams per mole and M of Q is molecular mass of Q and based on the question Q needs 2.67 times more to effuse in comparison to nitrogen gas, therefore, rate of Q = rate of N2/2.67
Now putting the values we get,
rate of N2/2.67/rate of N2 = √28/ √M of Q
√M of Q = √ 28 × 2.67
M of Q = (√ 28 × 2.67)²
M of Q = 199.66 grams per mole