Bronsted - Lowry acid in the given reaction is NH₄, as it gives H⁺ ion.
<h3>What is Bronsted - Lowry acid?</h3>
According to the theory of Bronsted - Lowry, acids are those substances which gives H⁺ ion or proton in the aqueous medium.
Given chemical reaction is :
NH₄ + HPO₄²⁻ → NH₃ + H₂PO₄⁻
In the above reaction NH₄ is the Bronsted - Lowry acid as it gives H⁺ ion in the reaction and changes to NH₃ which is the conjugate base of NH₄. Whereas HPO₄²⁻ is the Bronsted - Lowry base as it accepts the H⁺ ion to form H₂PO₄⁻ which is the conjugate acid of it.
Hence, option (1) is correct, i.e. NH₄ is the Bronsted - Lowry acid.
To know more about Bronsted - Lowry acid, visit the below link:
brainly.com/question/1435076
Answer:
Volcanic mountains form as lava oozes forth from cracks in the earth. The lava builds up around the area where the eruption occurred. Layers build upon layers and over a period of time, a volcanic mountain forms. There are several ways that volcanic mountains are formed. Shield volcanoes, which are very wide with a gentle slope, are formed by long periods of eruption with low-viscosity lava.
Explanation: Hoped this helped! :)
Answer:
It does this by using a thermal conductor (usually metal) to carry heat away from the processor into fins that expose a high amount of surface area to moving air. This allows the air to be heated, thus cooling the heat sink and the processor as well.
Answer:
T₂ = 169.89 K
Explanation:
Given data:
Initial volume = 250 cm³
Initial temperature = 10°C (10+273.15 K = 283.15 K)
Final temperature = ?
Final volume = 150 cm³
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 283.15 K × 150 cm³ / 250 cm³
T₂ = 42472.5 K. cm³ / 250 cm³
T₂ = 169.89 K