Answer:
The answer is B) No.
Explanation:
The equation balanced is:
2 FeCl₃ + 3 MgO → Fe₂O₃ + 3 MgCl₂
Equation balancing can be done by "trial and error" or by algebraic method.
In this way the equation is balanced on both sides having:
2 atoms of Fe, 6 of Cl, 3 of Mg and 3 of 0.
Answer:
The balanced equation is:
2 HNO3 + Mg ---> Mg(NO3)2 + H2
From the equation, we can see that we need twice the moles of HNO3 than the moles of Mg
Moles of Mg:
Molar mass of Mg = 24 g/mol
Moles = Given mass / Molar Mass
Moles of Mg = 4.47 / 24 = 0.18 moles (approx)
Hence, 2(moles of Mg) = 0.36 moles of HNO3 will be consumed
Number of moles of HNO3 after the reaction is finished is the number of unreacted moles of HNO3
Unreacted moles of HNO3 = Total Moles - Moles consumed
Unreacted moles of HNO3 = 0.64 moles (approx)
Since we approximated the value of moles of Mg, the value of remaining moles of HNO3 will also be approximate
From the given options, we can see that 0.632 moles is the closest value to our answer
Therefore, 0.632 moles will remain after the reaction
I’m pretty sure it craters sodium acetate
I *think* through weathering and erosion. Hope this helped
Answer:
A piece of sodium metal can be described as a pure substance and an element. ... Sodium is a soft, waxy, silvery, highly reactive metal. Sodium belongs to group 1 of the periodic table and it is highly abundant in the earth's crust. Sodium can also be found in various minerals such as rock salt, feldspars and sodalite.
Explanation:
here is short description that will help u 2 understand more
Thx