Answer:
Then, at some point, these higher energy electrons give up their "extra" energy in the form of a photon of light, and fall back down to their original energy level.
Explanation:
When properly stimulated, electrons in these materials move from a lower level of energy up to a higher level of energy and occupy a different orbital.
Answer:
D
Explanation:
We must study the reaction pictured in the question closely before we begin to attempt to answer the question.
Now, the reaction is a free radical reaction. This implies that only one electron is transferred. The transfer of one electron is shown using a half arrow rather than a full arrow. The both species are radicals (odd electron species) and contribute one electron each.
Hence we must show electron movements in both species using a half arrow.
The boiling point of plain water is less than the boiling point of both salt and sugar water.
<h3>What is boiling point?</h3>
Boiling point can be defined as the point when the pressure exerted by the surroundings upon a liquid is equal to the pressure exerted by the vapour of the liquid.
The boiling point of plain water is 100°C which increases upon addition of solute substances such as salt and sugar.
But salts are usually made up of ionic bonds while sugar are made up of covalent bonds. This means that more energy would be required to boil salt solution due to its ionic bonds.
Therefore, the boiling point of salt water is highest following sugar water before plain water which is the lowest.
Learn more boiling point here:
brainly.com/question/14008526
#SPJ1
Answer:
The carbocation intermediate reacts with a nucleophile to form the addition product.
Explanation:
The reaction of benzene with an electrophile is an electrophillic substitution reaction. Here the electrophile replaces hydrogen. There is no formation of carbocation as intermediate in the reaction. Infact there is transition state where the electorphile attacks on benzene ring and at the same time the hydrogen gets removed from the benzene. So a transition carbocation is formed.
The general mechanism is shown in the figure.
i) Attack of the electrophile on the benzene (which is the nucleophile)
ii) The carbocation intermediate loses a proton from the carbon bonded to the electrophile.
iii) the carbocation formation is the rate determining step.
iv) There is no formation of addition product.
Thus the wrong statement is
The carbocation intermediate reacts with a nucleophile to form the addition product.
The Heisenberg uncertainty principle listed above states that it’s impossible to determine with high precision both the momentum and position of an electron simultaneously.