Answer:
high density can withstand high acceleration and applied forces
Heavy metals are toxic to humans,
the clay is quite abundant and in general it is not toxic
Explanation:
The selection of materials for the construction of rockets takes into account many aspects, the technical resistance to the demands of space travel, but also the abundance of the material. Heavy metals have two very serious problems. The first one, some of them are a little scarce in nature, but the most serious problem is that almost all of them are toxic to humans, for example: lead and mercury.
On the other hand, the clay is quite abundant and in general it is not toxic to living beings.
If we use Newton's second law
F = m a
let's use the concept of density
rho = m / V
m = rho V
let's substitute
F = rho V a
From this expression we see that a material with high density can withstand high acceleration and applied forces, such as those existing in spacecraft clearance and re-entry to Earth.
Unfortunately with this law there is no criterion to select a material unless its density is high, in addition to this criterion low toxicity criteria for human beings are used,
Where power<span> P is in watts, voltage V is in volts and current I is in amperes (DC).</span>Power Formula<span> 2 – Mechanical </span>power equation<span>: </span>Power<span> P = E ⁄ t where </span>power<span> P is in watts, </span>Power<span> P = work / time (W ⁄ t). Energy E is in joules, and time t is in seconds.</span>
Answer:
The minumum speed the pail must have at its highest point if no water is to spill from it
= 2.64 m/s
Explanation:
Working with the forces acting on the water in the pail at any point.
The weight of water is always directed downwards.
The normal force exerted on the water by the pail is always directed towards the centre of the circle of the circular motion.
And the centripetal force, which keeps the system in its circular motion, is the net force as a result of those two previously mentioned force.
At the highest point of the motion, the top of the vertical circle, the weight and the normal force on the water are both directed downwards.
Net force = W + (normal force)
But the speed of this motion can be lowered enough to a point where the normal force becomes zero at the moment the pail reaches the highest point of its motion. Any speed lower than this value would result in the water spilling out of the pail. The water would not be able to resist the force of gravity.
At this point of minimum velocity,
Normal force = 0
Net force = W
Net force = centripetal force = (mv²/r)
W = mg
(mv²/r) = mg
r = 0.710 m
g = 9.8 m/s²
v² = gr = 9.8 × 0.71 = 6.958
v = √(6.958) = 2.64 m/s
Hope this Helps!!!
Answer:
3.06m/s² to the east
Explanation:
Given parameters:
Mass of car = 2.5 x 10³kg
Force acting on the car = 7.65 x 10³N
Unknown:
Acceleration of the car = ?
Solution:
From Newton's second law of motion:
Force = mass x acceleration
Acceleration =
=
= 3.06m/s² to the east