While terrestrial biomes are shaped by air temperature and precipitation, aquatic systems are characterized by factors such as water salinity, depth, and whether the water is moving or standing. If that's what you mean?
Explanation:
According to Bohr's postulates, the electron in the present in the lower energy level can absorb energy and exits to higher energy level. Also, when this electron returns back to its orbit, it emits some energy.
Since the hydrogen consists of 1 electron and 1 proton. The lowest energy configuration of the hydrogen is when n =1 or, when the electron is present in the K-shell or the ground state.
The possible transition for the electron given in the question is :
n = 2, 3 and 4
The schematic diagram of the hydrogen atom consisting of these four quantum levels in which the electron can jump (Absorption) and comeback to from these energy levels (emission) .
Answer:
this is what i got
Explanation:
α-decay: When a radioactive nucleus disintegrates by emitting an αα-particle, the atomic number decreases by two and mass number decreases by four. Example: 88Ra226→86Rn222+2He4.
Answer:
that pressure is called atmospheric pressure or air pressure. It is the force exerted on a surface by the air above is as gravity pulls it to earth. atmospheric pressure is commonly measured with a barometer. In a barometer , a column of mercury is a glass tube rises ot falls as the weight of the atmospheric changes
<h3><u>Answer;</u></h3>
- Molecules along the surface of a liquid behave differently than those in the bulk liquid.
- Cohesive forces attract the molecules of the liquid to one another.
- Surface tension increases as the temperature of the liquid rises
<h3><u>Explanation;</u></h3>
- Surface tension is measured as the energy required to increase the surface area of a liquid by a unit of area. The surface tension of a liquid results from an imbalance of intermolecular attractive forces, the cohesive forces between molecules.
- A molecule in the bulk liquid experiences cohesive forces with other molecules in all directions, while a molecule at the surface of a liquid experiences only net inward cohesive forces.
- Surface tension decreases when temperature increases because cohesive forces decrease with an increase of molecular thermal activity.