Answer:
2.9 E14 Hz
Explanation:
As we know by Einstein's equation that energy incident on the photo sensitive surface will be used by the surface to eject electron out of the surface with some kinetic energy.
This is given by

now the threshold frequency is the minimum frequency of the incident photons due to which electrons are ejected out with minimum kinetic energy or least kinetic energy.
So here when KE = 0 in the graph then corresponding to that position the frequency will be given as threshold frequency
so here from graph when KE = 0

Answer:
r = 0.86
Explanation:
Correlation coefficients are the strength of the relationship between two variables.
Correlations can indicate anywhere between
- 1 - for a strong positive relationship.
- -1 - for a strong negative relationship.
- 0 - for no relationship at all.
Looking at sample correlation coefficient formula which says
=
÷ (
×
)
where
and
are the sample deviations and
is the sample covariance, all of which will remain the same for Maria and John.
Hence, John's correlation will be approximately 0.86 since he would have approximately the same measurement as Maria's measurement when Maria's measurement is converted from centimeters to inches.
Answer:
a) The velocity of rock at 1 second, v = 9.8 m/s
b) The velocity of rock at 3 second, v = 29.4 m/s
c) The velocity of rock at 5.5 second, v = 53.9 m/s
Explanation:
Given data,
The rock is dropped from a bridge.
The initial velocity of the rock, u = 0
a) The velocity of rock at 1 second,
Using the first equation of motion
v = u + gt
v = 0 + 9.8 x 1
v = 9.8 m/s
b) The velocity of rock at 3 second,
v = u + gt
v = 0 + 9.8 x 3
v = 29.4 m/s
c) The velocity of rock at 5.5 second,
v = u + gt
v = 0 + 9.8 x 5.5
v = 53.9 m/s
<u>Answer</u>
0.00346 hL
<u>Explanation</u>
cL means Centilitre while hL means Hectolitre.
10,000 cL = 1 hL
∴ 34.6 cL = 34.6/10,000 hL
= <em>0.00346 hL</em>
Answer: You could dissolve it by heating it back up, then just cooling it down again.
Hope that helps!