Answer:
λ = 1.4 × 10^(-7) m
Explanation:
We are given;
distance of eye piece from the source;D = 1.5 m
distance between the virtual sources;d = 7.5 × 10^(-4) m
To find the wavelength, we will use the formula for fringe width;
X = λD/d
Where X is fringe width, λ is wavelength, while d and D remain as before.
Now, fringe width = eye-piece distance moved transversely/number of fringes
Eye piece distance moved transversely = 1.88 cm = 1.88 × 10^(-2) m
Thus,
Fringe width = (1.88 × 10^(-2))/10 = 1.88 × 10^(-3) m
Thus;
1.88 × 10^(-3) = λ(1.5)/(7.5 × 10^(-4))
λ = [1.88 × 10^(-3) × (7.5 × 10^(-4))]/1.5
λ = 1.4 × 10^(-7) m
Answer:
The answer is A
Explanation:
Density basically shows the amount of mass per volume of something. You can easily find Density with the equation D=m/v
D= Density
m= mass
v= volume
Answer:
answer is 2 option because more force is applied
After finding acceleration, it is found that 0.02 N of force is acting on the marble
<h3>
What is Force ?</h3>
Force can simply be defined as a pull or push. It is the product of mass and acceleration of the object. It is a vector quantity and it is measured in Newton.
Given that a steel marble with 0.05 kg of mass starts from rest and rolls down a ramp. It travels 0.25 m in 1.2 seconds.
The parameters to consider are;
Before we find the force acting on the marble, let us first find the acceleration by using the formula: s = ut + 1/2at²
Substitute all the parameters into the formula
0.25 = 0 + 1/2 × a × 1.2²
0.25 = 1/2 × a × 1.44
0.25 = 0.72a
a = 0.25/0.72
a = 0.35 m/s²
The force acting on the marble will be ;
F = ma
F = 0.05 × 0.35
F = 0.017
F = 0.02 N
Therefore, the force acting on the marble is 0.02 N
Learn more about Force here: brainly.com/question/388851
#SPJ1