Answer:
2.86×10⁻¹⁸ seconds
Explanation:
Applying,
P = VI................ Equation 1
Where P = Power, V = Voltage, I = Current.
make I the subject of the equation
I = P/V................ Equation 2
From the question,
Given: P = 0.414 W, V = 1.50 V
Substitute into equation 2
I = 0.414/1.50
I = 0.276 A
Also,
Q = It............... Equation 3
Where Q = amount of charge, t = time
make t the subject of the equation
t = Q/I.................. Equation 4
From the question,
4.931020 electrons has a charge of (4.931020×1.6020×10⁻¹⁹) coulombs
Q = 7.899×10⁻¹⁹ C
Substitute these value into equation 4
t = 7.899×10⁻¹⁹/0.276
t = 2.86×10⁻¹⁸ seconds
Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse:
Answer:
The friction of the piano and the weight
Explanation:
Answer:
44.08 Volt
Explanation:
N = 8, A = 0.0775 m^2, R = 8.53 ohm, B = 0.222 T, f = 51 Hz
e0 = N B A w
e0 = 8 x 0.222 x 0.0775 x 2 x 3.14 x 51
e0 = 44.08 Volt
It is commonly perceived as "thickness", or resistance to pouring. Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction. Thus, water is "thin", having a low viscosity, while vegetable oil is "thick" having a high viscosity.