They speed up when they get hotter and they slow down when they get colder. I think
Answer:
At 430.34 K the reaction will be at equilibrium, at T > 430.34 the
reaction will be spontaneous, and at T < 430.4K the reaction will not
occur spontaneously.
Explanation:
1) Variables:
G = Gibbs energy
H = enthalpy
S = entropy
2) Formula (definition)
G = H + TS
=> ΔG = ΔH - TΔS
3) conditions
ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction
4) Assuming the data given correspond to ΔH and ΔS
ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K
=> T = [ΔH - ΔG] / ΔS
ΔG = 0 => T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K
This is, at 430.34 K the reaction will be at equilibrium, at T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.
I believe that this atom is chlorine and the atom has an overall charge of zero.
Chlorine is chemical element which is atomic number 17 in the periodic table. Each chlorine atom has 17 protons (positively charged) in the nucleus balanced by 17 electrons (negatively charged) in the energy shells ( thus an overall charge of zero)
Answer:
Explanation:
Two moles of magnesium (Mg) and five moles of oxygen (O2) are placed in a reaction vessel. When magnesium is ignited, it reacts with oxygen. What is the limiting reactant in this experiment?
Mg + O2 → MgO (unbalanced)
first, balance the equation
2Mg +O2-------> 2MgO
two magnesium atoms react with one diatomic oxygen molecule
there is a 1:1 ratio of magnesium to oxygen atoms
but we have 2 moles of magnesium atoms and 2X5 = 10 moles of oxygen atoms
the lesser magnesium LIMITS the amount of product we can make, so it is the LIMITING REAGENT.
Answer: when its in the air
Explanation:
please brainliest me