Answer:
examples of type of matter that <u>c</u><u>i</u><u>r</u><u>c</u><u>u</u><u>l</u><u>a</u><u>t</u><u>e</u><u> </u>through the environment are carbon, nitrogen, and water
Answer:
The detailed calculation is shown in the attached file.
last condition (1000 K in 150.000 dm3) will have the least deviations and it is the condition where real gas will behave as ideal gases
Explanation:
Real gas behave more ideally or they tend towards ideality when there is the least deviation, or their inter-molecular forces between their molecules are mainly responsible for their deviations as such gases with the strongest intermolecular forces shows the strongest deviations. As such, when their is an increase in temperature and volume and a decrease in pressure, real gas tends towards ideal gas in this case.
From the three conditions given, it is obvious that the last condition(1000 K in 150.000 dm3) will have the least deviations.
Muscle tissue
Explanation: Muscle tissue is a soft tissue that makes up most of the tissues in the muscles of the human muscular system. It is the only type of tissue that has cells with the ability to contract. Skeletal muscle tissue is attached to bones by tendons.
<h3>
Answer:</h3>
The root mean square speeds of O₂ and UF₆ is 513m/s and 155 m/s respectively.
<h3>
Solution and Explanation:</h3>
- To find how fast molecules or particles of gases move at a particular temperature, the root mean square speed is calculated.
- Root mean square speed of a gas is calculated by using the formula;

Where R is the molar gas constant, T is the temperature and M is the molar mass of gas in Kg.
<h3>Step 1: Root mean square speed from O₂</h3>
Molar mass of Oxygen is 32.0 g/mol or 0.032 kg/mol
Temperature = 65 degrees Celsius or 338 K
Molar gas constant = 8.3145 J/k.mol


<h3>
Step 2: Root mean square speed of UF₆ </h3>
The molar mass of UF₆ is 352 g/mol or 0.352 kg/mol


Therefore; the root mean square speeds of O₂ and UF₆ is 513m/s and 155 m/s respectively.