Answer:
The answer is bacteria (microorganisms)
Explanation:
Bacteria can't be seen with the naked eye but it's part of a species that make up the biodiversity.
Answer:
there are 18 electrons in the outermost shell of argon atom
Most of the carbon is put away in sedimentary carbonates and kerogens, with the rest being spread between the sea, the air, biomass, for example, plants and creatures, and petroleum products
<u>Explanation</u>:
- The carbon cycle is the procedure where carbon goes from the surrounding into living beings and to the Earth and then again goes into the air. Plants take carbon dioxide from the air and use it for food preparation. Creatures at that point eat the nourishment and carbon is put away in their bodies or discharged as CO2 through the breath.
-
Most of the carbon is put away in sedimentary carbonates and kerogens, with the rest being spread between the sea, the air, biomass, for example, plants and creatures, and petroleum products. This is known as carbon storage.
-
For instance, carbon, a fundamental component in natural particles, is preserved as it is moved from inorganic carbon in a biological system to natural atoms in living life forms of the biological system and back as inorganic carbon to the earth.
Answer:
The answer to your question is 432 g of CO₂
Explanation:
Data
CaCO₃ = 983 g
CaO = 551 g
CO₂ = ?
Balanced reaction
CaCO₃ (s) ⇒ CaO (s) + CO₂ (g)
This reaction is balanced, to solve this problem just remember the Lavoisier Law of conservation of mass that states that the mass of the reactants is equal to the mass of the products.
Mass of reactants = Mass of products
Mass of CaCO₃ = Mass of CaO + Mass of CO₂
Solve for CO₂
Mass of CO₂ = Mass of CaCO₃ - Mass of CaO
Mass of CO₂ = 983 g - 551 g
Simplification
Mass of CO₂ = 432 g
Answer:
CuCl2-Ion-dipole forces
CuSO4-Ion-dipole forces
NH3-Dipole-dipole forces
CH3OH-Dipole-dipole forces
Explanation:
Water consists of a dipole. The water molecule contains a positive end and a negative end. The positive ion attracts the negative dipole of water while the positive dipole in water interacts with the negative ion of an ionic substance. This explains the dissolution of ionic substances in water.
Copper II chloride and copper sulphate are ionic substances hence they dissolve by the mechanism described above.
Molecules consisting of dipoles dissolves by interaction of the molecule's dipoles with the dipoles in water. For example, methanol interacts with water through hydrogen bonding which is involves molecular dipoles