Answer:
So the molar mass of C4,H10 is
58.12g mole -1
Add an alkaline compound to raise the pH to 7.2.
Answer:
249 L
Explanation:
Step 1: Write the balanced equation
C₃H₈(g) + 5 O₂(g) → 3 CO₂(g) + 4 H₂O(g)
Step 2: Calculate the moles of CO₂ produced from 5.00 moles of C₃H₈
The molar ratio of C₃H₈ to CO₂ is 1:3. The moles of CO₂ produced are 3/1 × 5.00 mol = 15.0 mol
Step 3: Convert "30.0°C" to Kelvin
We will use the following expression.
K = °C + 273.15
K = 30.0°C + 273.15 = 303.2 K
Step 4: Calculate the volume of carbon dioxide
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T/P
V = 15.0 mol × 0.0821 atm.L/mol.K × 303.2 K/1.50 atm
V = 249 L
Answer:
An Ionic Bond
Explanation:
Salt compounds are formed by the "donating" of electrons.
Explanation:
(Ques- A) Why does the first method for determining volume work only for a regular-shaped object?
<u>(Ans- A)</u> <em>Because the method requires precise dimensions of objects for result, which is not possible for irregular shaped objects.</em>
(Ques - B) Will the second method for determining volume work for any object or just an odd-shaped one? Why?
<u>(Ans-B)</u> <em>It will work for both regular and irregular shaped objects since both displace equal volumes of water.</em>
(Ques - C) Is one method of measurement more accurate than the other? Why or why not?
<u>(Ans-C)</u> <em>Both are pretty accurate, with some experimental errors which may creep in accidentally. </em>
(Ques- D) Would the displacement method of measurement work for a cube of sugar? What about a cork? Why?
<u>(Ans - D)</u> <em>No, the method would not work because sugar being soluble, will dissolve in water. </em>
<em>No, the method would not work because sugar being soluble, will dissolve in water. Cork is less dense than water so floats on it, with only part of it submerged in water, resulting in displacement of less volume of water than actual volume of Cork.</em>
(Ques-E) What did you find out from this investigation? Be thoughtful in your answer.
<u>(Ans- E)</u> <em>I learnt about determining volume of different objects from this investigation. </em>(Sorry, I know its not a very thoughtful answer)