In the reaction between 1 molecule of bromine and 2 molecules of potassium chloride, there are six atoms in the products.
Let's consider the balanced equation for the reaction between 1 molecule of bromine and 2 molecules of potassium chloride. This is a single replacement reaction.
Br₂ + 2 KCl ⇒ 2 KBr + Cl₂
We obtain as products, 2 molecules of potassium bromide and 1 molecule of chlorine.
- 1 molecule of KBr has 2 atoms, so 2 molecules contribute with 4 atoms.
- 1 molecule of Cl₂ has 2 atoms.
- The 4 atoms from KBr and the 2 atoms from Cl₂ make a total of 6 atoms.
In the reaction between 1 molecule of bromine and 2 molecules of potassium chloride, there are six atoms in the products.
Learn more: brainly.com/question/21850455
Answer: 166.67km/hr
Explanation:
Given the following :
Distance traveled = 250km
Time taken = 1.5 hours
Recall :
Speed = Distance traveled / time taken
Speed = 250 km / 1.5 hours
Speed = 166. 67 km/hr
Speed in m/s:
166.67km/hr = (166.67 × 1000)m / 3600 s
= 166670m / 3600s
= 46.3m/s
Hello!
a) Assuming this is asking for the minimum speed for the rock to make the full circle, we must find the minimum speed necessary for the rock to continue moving in a circular path when it's at the top of the circle.
At the top of the circle, we have:
- Force of gravity (downward)
*Although the rock is still connected to the string, if the rock is swinging at the minimum speed required, there will be no tension in the string.
Therefore, only the force of gravity produces the net centripetal force:

We can simplify and rearrange the equation to solve for 'v'.

Plugging in values:

b)
Let's do a summation of forces at the bottom of the swing. We have:
- Force due to gravity (downward, -)
- Tension force (upward, +)
The sum of these forces produces a centripetal force, upward (+).

Rearranging for 'T":

Plugging in the appropriate values:

<span>The SLOPE of a position-time graph represents an object’s SPEED.
It's not possible to tell the object's velocity from the graph, because
the graph doesn't show anything about what direction the object is
moving, and you need to know the direction in order to know the velocity. </span>