Answer:
ΔP = (640 N/cm^2)
Explanation:
Given:-
- The volume increase, ΔV/V0 = 4 ✕ 10^-3
- The Bulk Modulus, B = 1.6*10^9 N/m^2
Find:-
Calculate the force exerted by the moonshine per square centimeter
Solution:-
- The bulk modulus B of a material is dependent on change in pressure or Force per unit area and change in volume by the following relationship.
B = ΔP / [(ΔV/V)]
- Now rearrange the above relation and solve for ΔP or force per unit area.
ΔP = B* [(ΔV/V)]
- Plug in the values:
ΔP = (1.6*10^9)*(4 ✕ 10^-3)
ΔP = 6400000 N/m^2
- For unit conversion from N/m^2 to N/cm^2 we have:
ΔP = (6400000 N/m^2) cm^2 / (100)^2 m^2
ΔP = (640 N/cm^2)
Answer:
2.98 m/s^2
Explanation:
I have done this before and it was a question on my physics test
The answer is he weighs 187.39 LBS/Pounds
Answer:
40 meters. look for the dot above the 20 on the x-axis and follow it over to the left.
Explanation:
I attached a picture of the diagram associated with this question.
Now,
When we check the vertical components of the tension in the rope, we will find that we have two equal components acting upwards.
These two components support the weight and each of them has a value of TcosΘ
The net force acting on the body is zero.
Fnet=Force of tension acting upwards-Force due to weight acting downwards
0 = 2TcosΘ -W
W = 2TcosΘ
T = W / 2cosΘ