Answer:
The sled needed a distance of 92.22 m and a time of 1.40 s to stop.
Explanation:
The relationship between velocities and time is described by this equation:
, where
is the final velocity,
is the initial velocity,
the acceleration, and
is the time during such acceleration is applied.
Solving the equation for the time, and applying to the case:
, where
because the sled is totally stopped,
is the velocity of the sled before braking and,
is negative because the deceleration applied by the brakes.
In the other hand, the equation that describes the distance in term of velocities and acceleration:
, where
is the distance traveled,
is the initial velocity,
the time of the process and,
is the acceleration of the process.
Then for this case the relationship becomes:
.
<u>Note that the acceleration is negative because is a braking process.</u>
Answer:
I. 0 m/s
II. 20 m/s
III. Part BC
Explanation:
I. Determination of the initial velocity.
From the diagram given above,
The motion of the car starts from the origin. This implies that the car start from rest and as such, the initial velocity of the car is 0 m/s
II. Determination of the maximum velocity attained.
From the diagram given above, we can see clearly that the maximum velocity is 20 m/s.
III. Determination of the part of the graph that represents zero acceleration.
It important that we know the meaning of zero acceleration.
Zero acceleration simply means the car is not accelerating. This can only be true when the car is moving with a constant velocity.
From the graph given above, the car has a constant velocity between B and C.
Therefore, part BC illustrates zero acceleration.
Answer:
The capacity for doing work.
Explanation:
It has the forms kinetic, potential, thermal, electric, nuclear or other forms of energy.
Answer:
a soft foam material because soft materials absorb sound better
1.commensalism
2. pred-prey
3. parasite-host
4.commensalism