Answer:
The percentage power lost in the transmission line if the voltage not stepped up is 50%.
Explanation:
Given that,
Current = 60 A
Voltage = 120 V
Resistance = 1.0 ohm
We need to calculate the power
Using formula of power

Where,I =current
V = voltage
Put the value into the formula


We need to calculate the percentage power lost in the transmission line
If the voltage is not stepped up
Then, the power loss

Put the value into the formula


The percentage power loss P''


Hence, The percentage power lost in the transmission line if the voltage not stepped up is 50%.
Answer:
The velocity with which the jumper strike the mat in the landing area is 6.26 m/s.
Explanation:
It is given that,
A high jumper jumps over a bar that is 2 m above the mat, h = 2 m
We need to find the velocity with which the jumper strike the mat in the landing area. It is a case of conservation of energy. let v is the velocity. it is given by :

g is acceleration due to gravity

v = 6.26 m/s
So, the velocity with which the jumper strike the mat in the landing area is 6.26 m/s. Hence, this is the required solution.
Answer:
A real emf device has an internal resistance, but an ideal emf device does not.
5.55 mol H2O
Explanation:
Water has a molar mass of 18.01528 g/mol. We can then calculate the number of moles of water as
100 g H20 × (1 mol H2O/18.01528 g H20)
= 5.55 mol H2O
Answer:
D. Flow separation is caused due to adverse pressure gradient in the flowing fluid.
Explanation:
Flow separation :
When adverse pressure gradient become dominate then phenomenon of flow separation occurs.In the other words when boundary layer is form against the adverse pressure then phenomenon of flow separation occurs.The adverse pressure means a opposing which act in the opposite to the direction of fluid flow.Due to flow separation eddy formation occurs and these eddy leads to increases the losses in the fluid flow.Due to flow separation fluid leaves the solid surface and form eddies.
So the answer is D.