Answer: the speed at which products form
Explanation:
Rate of a reaction is defined as the speed at which a chemical reaction proceeds. It is often expressed in terms of the concentration of a reactant that is consumed in a unit time or the concentration of a product that is formed in a unit of time.
For a general reaction :
![Rate=-\frac{d[A]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D)
or ![Rate=+\frac{d[B]}{dt}](https://tex.z-dn.net/?f=Rate%3D%2B%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
where d[A] = change in concentration of reactant A
d[B] = change in concentration of product B
dt = time interval
Answer:
When radioactive atoms decay, they release energy in the form of ionizing radiation (alpha particles, beta particles and/or gamma rays). The energy is called ionizing radiation because it has enough energy to knock tightly bound electrons from an atom's orbit. This causes the atom to become a charged ion
Answer:
669 Liters
Explanation:
From the equation, it takes 3/2 as much hydrogen as ammonia gas
3/2 * 446 = 669 Liters of H2 gas
Answer:
The molarity of this solution is 0.156 M
Explanation:
Step 1: Data given
Mass of Ba(OH)2 = 1.90 grams
Molar mass Ba(OH)2 = 171.34 g/mol
Volume of the solution = 71.1 mL = 0.0711 L
Step 2: Calculate moles Ba(OH)2
Moles Ba(OH)2 = mass Ba(OH)2 / molar mass Ba(OH)2
Moles Ba(OH)2 = 1.90 grams / 171.34 g/mol
Moles Ba(OH)2 = 0.0111 moles
Step 3: Calculate molarity
Molarity solutin = moles Ba(OH)2 / volume solution
Molarity solution = 0.0111 moles / 0.0711 L
Molarity solution = 0.156 M
The molarity of this solution is 0.156 M