Answer:
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment.
(0.48 gram) x (1mole / 4.0 gram) = 0.48/4.0 = 0.12 mole
Answer:
D
Explanation:
Because do all of that and then you do a conclusion
Answer:
c. rate=−1/2Δ[HBr]/Δt=Δ[H2]/Δt=Δ[Br2]/Δt
Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, the rate is given as:
![rate=-\frac{1}{2} \frac{\Delta [HBr]}{\Delta t}=\frac{\Delta [Br_2]}{\Delta t} =\frac{\Delta [H_2]}{\Delta t}](https://tex.z-dn.net/?f=rate%3D-%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7B%5CDelta%20%5BHBr%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B%5CDelta%20%5BBr_2%5D%7D%7B%5CDelta%20t%7D%20%3D%5Cfrac%7B%5CDelta%20%5BH_2%5D%7D%7B%5CDelta%20t%7D)
It is necessary to remember that each concentration to time interval is divided into the stoichiometric coefficient, that is why HBr has a 1/2. Moreover, the concentration HBr is negative since it is a reactant and it has a negative rate due to its consumption.
Therefore, the answer is:
c. rate=−1/2Δ[HBr]/Δt=Δ[H2]/Δt=Δ[Br2]/Δt
Best regards.
Answer:
The concentration of the murexide solution is 0.0000745 M
Explanation:
From Beer-Lambert's law,
A = εlc
A = Absorbance = 28.65% = 0.2865
ε = molar absorptivity = 3847 M/cm
l = path length = 1cm
c = concentration in mol/L = ?
c = A/εl = 0.2865/(3847×1) = 0.0000745 mol/L
Hope this Helps!