Explanation: This is a reaction of oxidation of
in the presence of acidified
. Acidified
is a strong oxidizing agent.
To balance out the
on the reactant side, we write
on the product side.
Balancing out the following reaction gives us:

If the grade of the ore is 37.3% nickel, then the unknown quantity to get 10 grams of nickel is 0.373 x = 10 grams or x = 10/0.373=26.8 grams or 0.0268 kg needed to dig up to recover the 10 grams of nickel. At this grade of ore, 1 kilogram would yield 373 grams of nickel.
The question is incomplete, here is the complete question:
At elevated temperature, nitrogen dioxide decomposes to nitrogen oxide and oxygen gas

The reaction is second order for
with a rate constant of
at 300°C. If the initial [NO₂] is 0.260 M, it will take ________ s for the concentration to drop to 0.150 M
a) 1.01 b) 5.19 c) 0.299 d) 0.0880 e) 3.34
<u>Answer:</u> The time taken is 5.19 seconds
<u>Explanation:</u>
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken = ?
[A] = concentration of substance after time 't' = 0.150 M
= Initial concentration = 0.260 M
Putting values in above equation, we get:

Hence, the time taken is 5.19 seconds
Answer:
1000N is needed to be applied.
Explanation:
Machines make doing work easier. They allow us use small effort to carry out work on huge amount of load.
The mechanical advantage of a machine;
(M.A) =load/effort
M.A = 0.6
Load =600N
effort =?
0.6 = 600/effort
effort = 600/0.6
effort = 1000N