When 440.23 grams of iron(III) oxide are reacted with hydrogen gas, the amount of iron produced will be 307.66 grams
<h3>Stoichiometric calculation</h3>
From the equation of the reaction:

The mole ratio of iron(III) oxide to produced iron is 1:2.
Mole of 440.23 iron(III) oxide = 440.23/159.69 = 2.76 moles
Equivalent mole of produced iron = 2.76 x 2 = 5.52 moles
Mass of 5.52 moles of iron = 5.52 x 55.8 = 307.66 grams
More on stoichiometric calculations can be found here; brainly.com/question/27287858
#SPJ1
Answer:
ionic or covalent
Explanation:
The outermost electrons -- the valence electrons -- are able to interact with other atoms, and, depending on how those electrons interact with other the atoms, either an ionic or covalent bond is formed, and the atoms fuse together to form a molecule.
Answer:
odorless, crystalline, white solid with a sour taste.
Explanation:
Answer:
The law of conservation of mass represents a balanced chemical equation.
Answer:
<em>Dry suction chest tube system</em>
Explanation:
<em>The dry suction drains that are self-regulating today use a small, adjustable regulator installed into the drain. </em>
So long as there is enough air flow from the suction of the wall (that will be shown on the drain) it will respond correctly to changes in the pressure of the source or the patient to retain suction at the drain level.
It's also a quiet mode of activity.