Heat_1: Get the ice to 0 degrees
Convert 7 kg to grams
7 kg [1000 grams / 1 kg] = 7000 grams
Heat needed to get the the ice from - 9 to 0
deltat = 0 - -9 = 9 degrees
m = 7000 grams
c = 2.1 joules/gram
Heat_1 = m*c*deltat
Heat_1 = 7000 * 2.1 * 9
Heat_1 = 132,300 joules
Heat_2: Melt the ice.
There is no temperature change. The formula is 333 j/gram
Formula: H = mass * constant
H = 7000 g * 333 J / gram
H = 2331000 joules
Heat_3: Total amount of Joules needed.
2331000 + 132300 = 2 463 300 joules
Convert to Megajoules
2 463 300 joules * 1 megajoule / 1000000 = 2.63 megajoules.
To test if the hypothesis is correct, a good way is to think of it this way:
Density = mass/volume, right?
Calculate the mass and volume of each and do the equation; this will test your hypothesis.
You will be left with the density of each. But, make sure that the sample sizes are the same (controlled variable) otherwise it will be an unfair test.
The ML of 0.85 m NaOH required to titrate 25 ml of 0.72m hbr to the equivalence point is calculated as follows
calculate the moles of HBr used
moles = molarity x volume
25 x0.072/1000= 0.0018 moles
write the equation for reaction
NaOH + HBr = NaBr + H2O
from reacting equation the mole ratio between NaOH to HBr is 1:1 therefore the moles of NaOH = 0.0018 moles
volume = moles/molarity
0.0018/0.085 = 0.021 L in Ml = 0.021 x1000=21.18 Ml ofNaOH
I believe it is Sodium. I could be wrong though.
Answer:
B. Salt, NaCl, is produced by the process of evaporation of seawater or brine. If the surface area of the water is increased, the same volume of water evaporates faster.
C. The Haber process combines hydrogen and nitrogen to make ammonia. The two gases are passed through a reactor under pressure and at high temperatures. If iron is added to the reactor, the yield of ammonia increases.
Explanation:
Evaporation of water is responsible for the production of sodium chloride also known as table salt. Sodium and chlorine are present in water. When more evaporation of water occurs, sodium and chlorine come close together forming sodium chloride. Haber process is responsible for the production of ammonia which is used as fertilizer. For speed up the process, catalyst is used such as iron in order to complete the reaction in less time. Iron binds hydrogen and nitrogen with each other.