Here's the part you need to know:
(Weight of anything) =
(the thing's mass)
times
(acceleration of gravity in the place where the thing is) .
Weight = (mass ) x (gravity) .
That's always true everywhere.
You should memorize it.
For the astronaut on Saturn . . .
Weight = (mass ) x (gravity) .
Weight = (68 kg) x (10.44 m/s²)
= 709.92 newtons .
__________________________________
On Earth, gravity is only 9.8 m/s².
So as long as the astronaut is on Earth, his weight is only
(68 kg) x (9.8 m/s²)
= 666.4 newtons .
Notice that his mass is his mass ... it doesn't change
no matter where he goes.
But his weight changes in different places, because
it depends on the gravity in each place.
8 miles per hour
(extra space)
Answer:
F = 1400 N
Explanation:
It is given that,
Mass of the ball, m = 70 kg
It is moving with an acceleration of 20 m/s². We need to find the force exerted by the ball.
Force is given by the product of mass and acceleration. So,
F = ma
![F=70\ kg\times \ 20m/s^2\\\\F=1400\ N](https://tex.z-dn.net/?f=F%3D70%5C%20kg%5Ctimes%20%5C%2020m%2Fs%5E2%5C%5C%5C%5CF%3D1400%5C%20N)
So, the force of 1400 N is exerted by a metal ball.
Solution:
Let the slope of the best fit line be represented by '
'
and the slope of the worst fit line be represented by '
'
Given that:
= 1.35 m/s
= 1.29 m/s
Then the uncertainity in the slope of the line is given by the formula:
(1)
Substituting values in eqn (1), we get
= 0.03 m/s