Work is calculated by multiplying force by the distance that the object had moved. The applied force is 60 N, moving the object by 10 m. Thus, the work does is 600 J. For the friction force which is equal to,
100N x 0.250 = 25.0 N
the work done is,
W = (60 N - 25 N) x 10 m = 350 J
The kinetic energy of the box can be equated to this force. Thus, the answer is also 350 J.
The given question is incomplete. The complete question is as follows.
A parallel-plate capacitor has capacitance
= 8.50 pF when there is air between the plates. The separation between the plates is 1.00 mm.
What is the maximum magnitude of charge that can be placed on each plate if the electric field in the region between the plates is not to exceed
V/m?
Explanation:
It is known that relation between electric field and the voltage is as follows.
V = Ed
Now,
Q = CV
or, Q = 
Therefore, substitute the values into the above formula as follows.
Q = 
=
= 
Hence, we can conclude that the maximum magnitude of charge that can be placed on each given plate is
.
Bro I really think it might be c
Answer:
the position of the wood below the interface of the two liquids is 2.39 cm.
Explanation:
Given;
density of oil,
= 926 kg/m³
density of the wood,
= 974 kg/m³
density of water,
= 1000 kg/m³
height of the wood, h = 3.69 cm
Based on the density of the wood, it will position across the two liquids.
let the position of the wood below the interface of the two liquids = x
Let the wood be in equilibrium position;
![F_{wood} - F_{oil} - F_{water} = 0\\\\\rho _{wood} .gh - \rho _o .g(h-x) - \rho_w .gx = 0\\\\\rho _{wood} .h - \rho _o (h-x) - \rho_w .x = 0\\\\\rho _{wood} .h -\rho _o h + \rho _o x - \rho_w .x =0\\\\h (\rho _{wood} -\rho _o ) = x( \rho_w - \rho _o)\\\\x =h[\frac{ \rho _{wood} -\rho _o }{\rho_w - \rho _o} ]\\\\x = 3.69\ cm \times [\frac{974 - 926}{1000-926} ]\\\\x = 2.39 \ cm](https://tex.z-dn.net/?f=F_%7Bwood%7D%20-%20F_%7Boil%7D%20-%20F_%7Bwater%7D%20%3D%200%5C%5C%5C%5C%5Crho%20_%7Bwood%7D%20.gh%20-%20%5Crho%20_o%20.g%28h-x%29%20-%20%5Crho_w%20.gx%20%3D%200%5C%5C%5C%5C%5Crho%20_%7Bwood%7D%20.h%20-%20%5Crho%20_o%20%28h-x%29%20-%20%5Crho_w%20.x%20%3D%200%5C%5C%5C%5C%5Crho%20_%7Bwood%7D%20.h%20-%5Crho%20_o%20h%20%2B%20%5Crho%20_o%20x%20-%20%5Crho_w%20.x%20%3D0%5C%5C%5C%5Ch%20%28%5Crho%20_%7Bwood%7D%20%20-%5Crho%20_o%20%29%20%3D%20x%28%20%5Crho_w%20-%20%5Crho%20_o%29%5C%5C%5C%5Cx%20%3Dh%5B%5Cfrac%7B%20%5Crho%20_%7Bwood%7D%20%20-%5Crho%20_o%20%7D%7B%5Crho_w%20-%20%5Crho%20_o%7D%20%5D%5C%5C%5C%5Cx%20%3D%203.69%5C%20cm%20%5Ctimes%20%5B%5Cfrac%7B974%20-%20926%7D%7B1000-926%7D%20%5D%5C%5C%5C%5Cx%20%3D%202.39%20%5C%20cm)
Therefore, the position of the wood below the interface of the two liquids is 2.39 cm.
Answer:
Pressure of the gas = 12669 (Pa) and height of the oil is 1,24 meters
Explanation:
First, we can use the following sketch for an easy understanding, in the attached image we can see the two pressure gauges the one with mercury to the right and the other one with oil to left. We have all the information needed in the mercury pressure gauge, so we can determine the pressure inside the vessel because the fluid is a gas it will have the same pressure distributed inside the vessel (P1).
Since P1 = Pgas, we can use the same formula, but this time we need to determine the height of the column of oil in the pressure gauge.
The result is that the height of the oil column is higher than the height of the one that uses mercury, this is due to the higher density of mercury compared to oil.
Note: the information given in the units of the fluids is not correct because the density is always expressed in units of (mass /volume)